8.已知函數(shù)f(x)=x2+lgx,當(dāng)x∈[2,4]時(shí),總有f(9)-f(2kx-x2)≥0,則實(shí)數(shù)k的最大值為3.

分析 易知f(x)=x2+lgx在[2,4]單調(diào)遞增,f(9)-f(2kx-x2)≥0等價(jià)于k≤$\frac{x}{2}$+$\frac{9}{2x}$,在[2,4]上恒成立,根據(jù)基本不等式即可求出k的最值.

解答 解:易知f(x)=x2+lgx在[2,4]單調(diào)遞增,
∵f(9)-f(2kx-x2)≥0,
∴9≥2kx-x2,在[2,4]上恒成立,
∴k≤$\frac{x}{2}$+$\frac{9}{2x}$,在[2,4]上恒成立,
∵$\frac{x}{2}$+$\frac{9}{2x}$≥2$\sqrt{\frac{x}{2}•\frac{9}{2x}}$=3,當(dāng)且僅當(dāng)$\frac{x}{2}$=$\frac{9}{2x}$即x=3時(shí)取等號(hào),
∴k≤3,
∴則實(shí)數(shù)k的最大值為3,
故答案為:3.

點(diǎn)評(píng) 本題考查了參數(shù)的取值范圍以及基本不等式,關(guān)鍵是分離參數(shù),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.關(guān)于函數(shù)f(x)=$\frac{|x|}{||x|-1|}$,給出下列四個(gè)命題:
①當(dāng)x>0時(shí),y=f(x)單調(diào)遞減且沒(méi)有最值;
②方程f(x)=kx+b(k≠0)一定有解;
③如果方程f(x)=k有解,則解的個(gè)數(shù)一定是偶數(shù);
④y=f(x)是偶函數(shù)且有最小值,
則其中真命題是②.(只要寫(xiě)標(biāo)題號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題正確的是( 。
A.在三角形ABC中,sinA>sinB,則邊a>b
B.若對(duì)任意正整數(shù)n,有a2n+1=an•an+2,則數(shù)列{an}為等比數(shù)列
C.向量數(shù)量積$\overrightarrow{a}$•$\overrightarrow$<0,則$\overrightarrow{a}$,$\overrightarrow$夾角為鈍角
D.x0為函數(shù)y=f(x)的極值點(diǎn)的充要條件是f′(x0)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)集合A={x|y=$\sqrt{lo{g}_{0.5}\frac{x+1}{4}}$,B={y|y=($\frac{1}{2}$)x,且x≤-1}
(Ⅰ)求集合C={x|x∈A∪B,且x∉A∩B};
(Ⅱ)設(shè)集合D={x|2-a<x<3a},滿足B∪D=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在銳角三角形ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=$\sqrt{3}$,A=$\frac{π}{3}$,則b+c的取值范圍是(3,2$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}滿足:a1=1,an+1=qan+$\frac{n}{(-2)^{n}}$(n∈N*
(1)若a1,a2,a3成等比數(shù)列,求實(shí)數(shù)q的值;
(2)若|q|≤1,求證:|an|<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若${a}^{\frac{1}{2}}$-${a}^{-\frac{1}{2}}$=3,且${a}^{\frac{3}{2}}$+${a}^{-\frac{3}{2}}$=k(${a}^{\frac{1}{2}}$+${a}^{-\frac{1}{2}}$),則實(shí)數(shù)k的值為( 。
A.10B.8C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)A={x|-1≤x≤3},B={x|-2≤x≤0}.求
(1)A∩B;
(2)A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知?jiǎng)狱c(diǎn)p(x,y)到定點(diǎn)F(1,0)的距離與它到定直線l:x=4的距離之比為$\frac{1}{2}$,過(guò)原點(diǎn)O的直線l交點(diǎn)P的軌跡C于A,B兩點(diǎn),線段AB的垂直平分線交點(diǎn)P的軌跡C于點(diǎn)E、F兩點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡C的方程,并證明:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OE{|}^{2}}$為定值;
(2)已知定點(diǎn)A1(-2,0),A2(2,0),動(dòng)點(diǎn)Q(4,t)在直線l上,作直線A1Q與軌跡C的另一個(gè)交點(diǎn)為M,作直線A2Q與軌跡C的另一個(gè)交點(diǎn)為N,試判斷M,N,F(xiàn)三點(diǎn)是否共線,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案