6.下列說法正確的是( 。
A.函數(shù)y=sinx•cosx的最大值為1
B.將y=sin(2x+$\frac{π}{4}$)圖象向右平移$\frac{π}{8}$個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到正弦函數(shù)y=sinx的圖象
C.函數(shù)f(x)=1-$\frac{1}{x}$在(-∞,0)上是減函數(shù)
D.函數(shù)f(x)=$\frac{1}{x}$-x的圖象關(guān)于y軸對(duì)稱

分析 利用三角函數(shù)的最值判斷A的正誤;
三角函數(shù)的圖象變換判斷B的正誤;
利用函數(shù)的單調(diào)性判斷C的正誤;
利用函數(shù)的對(duì)稱性判斷D的正誤;

解答 解:對(duì)于A,函數(shù)y=sinx•cosx=$\frac{1}{2}$sin2X$≤\frac{1}{2}$,它的最大值為$\frac{1}{2}$,所以A不正確;
對(duì)于B,將y=sin(2x+$\frac{π}{4}$)圖象向右平移$\frac{π}{8}$個(gè)單位,可得y=sin2x,再將所得圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到正弦函數(shù)y=sinx的圖象,所以B正確.
對(duì)于C,函數(shù)f(x)=1-$\frac{1}{x}$在(-∞,0)上是增函數(shù),所以C不正確;
對(duì)于D,函數(shù)f(x)=$\frac{1}{x}$-x不是偶函數(shù),函數(shù)的圖象不關(guān)于y軸對(duì)稱,所以D不正確;
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,命題的真假的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)fn(x)(n∈N*)具有下列性質(zhì):fn(0)=$\frac{1}{2}$;n[fn($\frac{k+1}{n}$)-fn($\frac{k}{n}$)]=[fn($\frac{k}{n}$)-1]fn($\frac{k+1}{n}$))(k=0,1,2,…,n-1).
(1)當(dāng)n一定時(shí),記ak=$\frac{1}{{f}_{n}(\frac{k}{n})}$,求ak的表達(dá)式(k=0,1,2,…,n-1);
(2)對(duì)n∈N*,證明$\frac{1}{4}$<fn(1)$≤\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=mlnx-x2+2(m∈R).
(Ⅰ)當(dāng)m=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在x=1時(shí)取得極大值,求證:f(x)-f′(x)≤4x-3;
(Ⅲ)若m≤8,當(dāng)x≥1時(shí),恒有f(x)-f′(x)≤4x-3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過一番瀏覽后,對(duì)該店鋪中的A,B,C三種商品有購買意向.已知該網(wǎng)民購買A種商品的概率為$\frac{3}{4}$,購買B種商品的槪率為$\frac{2}{3}$,購買C種商品的概率為$\frac{1}{2}$.假設(shè)該網(wǎng)民是否購買這三種商品相互獨(dú)立
(1)求該網(wǎng)民至少購買2種商品的概率;
(2)用隨機(jī)變量η表示該網(wǎng)民購買商品的種數(shù),求η的槪率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=-1時(shí),證明:在(1,+∞)上,f(x)+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)為奇函數(shù),且x∈(-∞,0)時(shí),f(x)=x(x-1),則x∈(0,+∞)時(shí),f(x)=-x(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若角α,β的終邊關(guān)于x軸對(duì)稱,則α,β之間的關(guān)系是α+β=2kπ(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)=log${\;}_{\frac{1}{2}}$x-ax>0在(0,$\frac{1}{4}$)上恒成立,a>0且a≠1,求a范圍( 。
A.(1,+∞)B.(0,1)C.(0,1)∪(1,16]D.(1,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}中,a1=$\frac{2}{3}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}-1$}是等比數(shù)列
(2)記bn=$\frac{{a}_{n}{a}_{n+1}}{{2}^{n+1}}$,數(shù)列{bn}前n項(xiàng)的和為Sn,求證:Sn<$\frac{1}{3}$
(3)是否存在成等差數(shù)列且互不相等的三個(gè)正整數(shù)m、s、r,使得am-1、as-1、ar-1成等比數(shù)列,若存在,求出所有滿足條件的正整數(shù)m、s、r,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案