分析 (1)變形函數(shù)y=x(8-3x)=$\frac{1}{3}×3x(8-3x)$,利用基本不等式的性質(zhì)即可得出;
(2)變形函數(shù)y=$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{1}{2}\frac{(x-1)^{2}+1}{x-1}$=$\frac{1}{2}[(x-1)+\frac{1}{x-1}]$,利用基本不等式的性質(zhì)即可得出.
解答 解:(1)∵0<x<2,∴函數(shù)y=x(8-3x)=$\frac{1}{3}×3x(8-3x)$≤$\frac{1}{3}(\frac{3x+8-3x}{2})^{2}$=$\frac{16}{3}$,
當(dāng)且僅當(dāng)x=$\frac{4}{3}$時(shí)取等號(hào).∴函數(shù)y=x(8-3x)的最大值為$\frac{16}{3}$.
(2)∵x>1,∴函數(shù)y=$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{1}{2}\frac{(x-1)^{2}+1}{x-1}$=$\frac{1}{2}[(x-1)+\frac{1}{x-1}]$$≥\frac{1}{2}×2\sqrt{(x-1)×\frac{1}{x-1}}$=1,
當(dāng)且僅當(dāng)x=2時(shí)取等號(hào).
∴函數(shù)y=$\frac{{x}^{2}-2x+2}{2x-2}$的最小值為1.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、變形能力,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,$\sqrt{2}$] | C. | [1,$\sqrt{5}$] | D. | [$\sqrt{5}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{5}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com