分析 確定P是Rt△ABC的重心,利用三角形中線公式,可得PA2+PB2=5PC2,從而可得結(jié)論.
解答 證明:已知△ABC是直角三角形,AB為斜邊,記AB=c,BC=a,CA=b,則有c2=a2+b2.
∵S△PAB=S△PBC=S△PCA,
∴P是Rt△ABC的重心.
設(shè)mc,ma,mb分別表示Rt△ABC的對(duì)應(yīng)邊AB,BC,CA上的中線,則有
PC=$\frac{2mc}{3}$,PA=$\frac{2ma}{3}$,PB=$\frac{2mb}{3}$.
而三角形中線公式為4(mc)2=2a2+2b2-c2=c2,
4(ma)2=2b2+2c2-a2,4(mb)2=2c2+2a2-b2.
∴4(ma)2+4(mb)2=5c2,
∴4(ma)2+4(mb)2=20(mc)2,
∴PA2+PB2=5PC2.
點(diǎn)評(píng) 本題考查三角形面積的計(jì)算,考查三角形中線公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=x,g(x)=\sqrt{x^2}$ | B. | f(x)=x,g(x)=|x| | C. | f(x)=x2-1,g(t)=t2-1 | D. | $f(x)=x,g(x)={(\sqrt{x})^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com