分析 作出不等式組對應(yīng)的平面區(qū)域,利用u的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:作出不等式組$\left\{\begin{array}{l}x+y-3≤0\\{x}^{2}-2x≤3\\{x}^{2}-2x>0\end{array}\right.$即:$\left\{\begin{array}{l}x+y-3≤0\\-1≤x≤3\\ x>2或x<0\end{array}\right.$對應(yīng)的平面區(qū)域如圖:
由u=x+2y得y=-$\frac{1}{2}$x+$\frac{u}{2}$
平移直線y=-$\frac{1}{2}$x+$\frac{u}{2}$由圖象可知當(dāng)直線y=-x+經(jīng)過點A(-1,4)時,
直線y=-$\frac{1}{2}$x+$\frac{u}{2}$的截距最大,此時u最大,為u=-1+8=7,
當(dāng)直線y=-$\frac{1}{2}$x+$\frac{u}{2}$經(jīng)過點B(-1,0)時,
直線y=-$\frac{1}{2}$x+$\frac{u}{2}$的截距最小,此時u最小,為u=-1,
故-1≤u≤7.
故答案為:[-1,7];
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用u的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${log_{0.2}}3<{e^{-\sqrt{2}}}<{({a^2}+3)^0}<lnπ$ | B. | ${e^{-\sqrt{2}}}<{log_{0.2}}3<{({a^2}+3)^0}<lnπ$ | ||
C. | ${e^{-\sqrt{2}}}<{({a^2}+3)^0}<{log_{0.2}}3<lnπ$ | D. | ${log_{0.2}}3<{({a^2}+3)^0}<{e^{-\sqrt{2}}}<lnπ$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com