13.已知等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,且S1=1,則q=-2,a2=-2,an=(-2)n-1

分析 運(yùn)用等差數(shù)列的中項(xiàng)性質(zhì),運(yùn)用等比數(shù)列的通項(xiàng)公式和求和公式,計(jì)算即可得到所求值.

解答 解:Sn+1,Sn,Sn+2成等差數(shù)列,可得
2Sn=Sn+1+Sn+2
若q=1,可得Sn=na1=n,
即有2n=n+1+n+2,方程無解;
若q≠1,則2•$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{{a}_{1}(1-{q}^{n+1})}{1-q}$+$\frac{{a}_{1}(1-{q}^{n+2})}{1-q}$,
可得2qn=qn+1+qn+2,
即為q2+q-2=0,解得q=1(舍去)或q=-2,
則q=-2,a2=a1q=-2,
an=a1qn-1=(-2)n-1
故答案為:-2,-2,(-2)n-1

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,同時(shí)考查等差數(shù)列的中項(xiàng)性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=|x+2|-|2x-2|
(1)解不等式f(x)≥-2;
(2)設(shè)g(x)=x-a,對(duì)任意x∈[a,+∞)都有g(shù)(x)≥f(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,某簡(jiǎn)單組合體由一個(gè)圓錐和一個(gè)圓柱組成,則該組合體三視圖的俯視圖為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinxcosx,x∈R.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期;
(Ⅲ)求函數(shù)g(x)=f(x)+f(x+$\frac{π}{4}$)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知所P(0,3),點(diǎn)A是橢圓$\frac{{x}^{2}}{4}$+y2=1上的任意一點(diǎn),點(diǎn)B是點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn),則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍是[5,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=(x+3-\frac{a}{2})({e^x}-a)$,若x∈(0,1)時(shí)f(x)<0恒成立,則實(shí)數(shù)a的取值范圍是[e,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線的標(biāo)準(zhǔn)方程是y2=-12x,則其焦點(diǎn)坐標(biāo)是( 。
A.(3,0)B.(-3,0)C.(0,3)D.(0,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各式中,值為$\sqrt{3}$的是( 。
A.sin15°cos15°B.${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$
C.$\frac{{1+tan{{15}^0}}}{{1-tan{{15}^0}}}$D.$\sqrt{\frac{1+cos30°}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx-$\frac{π}{3}$)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離是$\frac{π}{2}$.
(1)求f(x)的解析式:
(2)求f(x)的在[0,π]上的單增區(qū)間:
(3)若f($\frac{α}{2}$)>2,求α的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案