7.已知數(shù)列{an}是等比數(shù)列,并且a1,a2+1,a3是公差為-3的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=a2n,記Sn為數(shù)列{bn}的前n項和,證明:${S_n}<\frac{16}{3}$.

分析 (I)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(II)利用等比數(shù)列的前n項和公式即可得出.

解答 (Ⅰ)解:設(shè)等比數(shù)列{an}的公比為q,
∵a1,a2+1,a3是公差為-3的等差數(shù)列,
∴$\left\{\begin{array}{l}{a_2}+1={a_1}-3\\{a_3}=({a_2}+1)-3\end{array}\right.$,
即$\left\{\begin{array}{l}{a_1}q-{a_1}=-4\\{a_1}{q^2}-{a_1}q=-2\end{array}\right.$,
解得${a_1}=8{,_{\;}}q=\frac{1}{2}$.
∴${a_n}={a_1}{q^{n-1}}=8×{(\frac{1}{2})^{n-1}}={2^{4-n}}$.  
(Ⅱ)證明:∵$\frac{{{b_{n+1}}}}{b_n}=\frac{{{a_{2n+2}}}}{{{a_{2n}}}}=\frac{1}{4}$,
∴數(shù)列{bn}是以b1=a2=4為首項,$\frac{1}{4}$為公比的等比數(shù)列.
∴${S_n}=\frac{{4[1-{{(\frac{1}{4})}^n}]}}{{1-\frac{1}{4}}}$=$\frac{16}{3}[1-{(\frac{1}{4})^n}]<\frac{16}{3}$.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=2|x-a|(a∈R)滿足f(1+x)=f(1-x),且f(x)在[m,+∞)上單調(diào)遞增,則實數(shù)m的最小值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在長方體ABCD-A1B1C1D1中,AA1=2AB,AB=BC,則下列結(jié)論中正確的是( 。 
A.BD1∥B1CB.A1D1∥平面AB1CC.BD1⊥ACD.BD1⊥平面AB1C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c.若A=B,a=3,c=2,則cosC=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-1,函數(shù)g(x)=2tlnx,其中t≤1.
(Ⅰ)如果函數(shù)f(x)與g(x)在x=1處的切線均為l,求切線l的方程及t的值;
(Ⅱ)如果曲線y=f(x)與y=g(x)有且僅有一個公共點,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若向量 $\overrightarrow{a}$=($\sqrt{2}$,1),$\overrightarrow$=(2,x)共線,則實數(shù)x的值是(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.0D.±$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)向量$\overrightarrow{a}$=(0,2),$\overrightarrow$=($\sqrt{3}$,1),則$\overrightarrow{a}$,$\overrightarrow$的夾角等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)平面直角坐標(biāo)系中,A(-1,1),B(-1,2),C(-4,1).
(1)求直線BC與坐標(biāo)軸圍成三角形的面積;
(2)求△ABC的外接圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.a(chǎn)、b、c是-個長方體的長、寬、高,且a+b-c=1.已知長方體對角線長為1,且a>b,則高c的取值范圍是(0,$\frac{1}{3}$).

查看答案和解析>>

同步練習(xí)冊答案