2.設(shè)f(x)的定義域?yàn)锳={x∈R|x≠0},對(duì)任意的x,y∈A,都有f(x•y)=f(x)+f(y),且當(dāng)x>1時(shí)f(x)>0.
(1)求f(1)和f(-1),并證明:$f(\frac{x}{y})=f(x)-f(y)$;
(2)判斷f(x)的奇偶性;
(3)證明:f(x)在區(qū)間(0,+∞)上是增函數(shù).

分析 (1)利用賦值法進(jìn)行求解f(1)=0,f(-1)=0;       
(2)根據(jù)條件判斷函數(shù)的奇偶性即可;    
(3)根據(jù)函數(shù)單調(diào)性的定義進(jìn)行判斷;

解答 解:(1)令x=2,y=1,則f(2)=f(2)+f(1),解得f(1)=0,
令x=-1,y=-1,則f(1)=f(-1)+f(-1)=2f(-1)=0,則f(-1)=0,
∵f(x•y)=f(x)+f(y),
∴f(y)+f($\frac{x}{y}$)=f(y•$\frac{x}{y}$)=f(x),
即f($\frac{x}{y}$)=f(x)-f(y).
(2)由題意知,對(duì)定義域內(nèi)的任意x,y都有f(x•y)=f(x)+f(y),
且f(-1)=0,
令y=-1,代入上式,
∴f(-x)=f(-1)+f(x)=f(x),
∴f(x)是偶函數(shù).
(3)設(shè)x2>x1>0,則$f({x_2})-f({x_1})=f({x_1}•\frac{x_2}{x_1})-f({x_1})$=$f({x_1})+f(\frac{x_2}{x_1})-f({x_1})=f(\frac{x_2}{x_1})$
∵x2>x1>0,∴$\frac{x_2}{x_1}>1$,∴$f(\frac{x_2}{x_1})$>0,
即f(x2)-f(x1)>0,∴f(x2)>f(x1
∴f(x)在(0,+∞)上是增函數(shù).

點(diǎn)評(píng) 本題的考點(diǎn)是抽象函數(shù)的性質(zhì)及其應(yīng)用,根據(jù)證明函數(shù)奇偶性和單調(diào)性的方法,反復(fù)給x和y值利用給出恒等式,注意條件的利用;利用賦值法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)g(x)=x2-(m-2)x+m-2,若|g(x)|在[$\frac{1}{2}$,2]上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(理科)已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且Sn=$\frac{{{a_n}({a_n}+1)}}{2}$,n∈N*
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=$\frac{1}{{{a_n}^2}}$,Tn=b1+b2+…+bn,求證:$1≤{T_n}<\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1-sin2x}{sinx-cosx}$
(1)求f(x)的周期;
(2)求f(x)的最大值及取得最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,滿足f(x+y)=f(x)f(y)的單調(diào)遞增函數(shù)是(  )
A.f(x)=x3B.$f(x)={(\frac{1}{2})^x}$C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=|x-a|在(-∞,-1)上是單調(diào)函數(shù),則a的取值范圍是(  )
A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓M:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)的焦點(diǎn)在x軸上,O為坐標(biāo)原點(diǎn),過橢圓右焦點(diǎn)垂直于x軸的直線,交橢圓于點(diǎn)A、B,S△AOB=$\frac{2}{5}$$\sqrt{5}$.
(I)求橢圓M的方程;
(Ⅱ)動(dòng)直線l交橢圓M于不同的兩點(diǎn)C,D,若以|CD|為直徑的圓過原點(diǎn)O,
(i)求線段|CD|的取值范圍;
(ii)證明:直線l與定圓N相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列結(jié)論正確的是個(gè)數(shù)為( 。
①y=ln2 則y′=$\frac{1}{2}$;
②y=$\sqrt{x}$ 則y′=$\frac{1}{2\sqrt{x}}$
 ③y=e-x 則y′=-e-x;
④y=cosx 則y′=sinx.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.△ABC外接圓半徑為$\sqrt{3}$,內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c,若A=60°,b=2,則c的值為$\sqrt{6}+1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案