11.如圖所示的幾何體,關于其結構特征,下列說法不正確的是( 。
A.該幾何體是由兩個同底的四棱錐組成的幾何體
B.該幾何體有12條棱、6個頂點
C.該幾何體有8個面,并且各面均為三角形
D.該幾何體有9個面,其中一個面是四邊形,其余均為三角形

分析 根據(jù)幾何體的直觀圖,得出該幾何體的結構特征,由此判斷選項A、B、C正確,選項D錯誤.

解答 解:根據(jù)幾何體的直觀圖,得
該幾何體是由兩個同底的四棱錐組成的幾何體,
且有棱MA、MB、MC、MD、AB、BC、CD、DA、NA、NB、NC和ND,共12條;
頂點是M、A、B、C、D和N共6個;
且有面MAB、面MBC、面MCD、面MDA、面NAB、面NBC、面NCD和面NDA共個,且每個面都是三角形.
所以選項A、B、C正確,選項D錯誤.
故選:D.

點評 本題考查了利用空間幾何體的直觀圖判斷幾何體結構特征的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知拋物線y2=4x截直線y=x+b所得弦長為4,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=3sinωxcosωx+$\sqrt{3}$cos2ωx(ω>0)的最小正周期為$\frac{π}{2}$,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位后,得到的函數(shù)g(x)=(  )
A.$\sqrt{3}$cos4x+$\frac{\sqrt{3}}{2}$B.-$\sqrt{3}$cos4x+$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$sin(4x+$\frac{5}{6}$π)+$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$sin(4x-$\frac{5}{6}$π)+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知復數(shù)z=3+$\frac{3-4i}{4+3i}$,則$\overline z$=( 。
A.3-iB.2-3iC.3+iD.2+3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.數(shù)列{an}滿足an+1-an+an-1=0(n≥2),且a1=1,a2=-1,則a2011=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知海島B在海島A的北偏東45°的方向上,兩島相距10海里.小船P從海島B以2海里/小時的速度沿直線向海島A移動,同時小船Q從海島A出發(fā),沿北偏西15°方向以4海里/小時的速度移動.
(1)求小船航行過程中,兩船相距的最近距離;
(2)求小船P處于小船Q的正東方向時,小船航行的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求函數(shù)y=f(x)-g(x)的極值;
(2)求函數(shù)y=f[xg(x)-2],x∈[1,e]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.命題“?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≤1”的否定為(  )
A.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$>1B.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≥1
C.?x∈R,3x+$\frac{1}{{3}^{{x}$>1D.?x∈R,3x+$\frac{1}{{3}^{{x}$<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.拋物線x2=2py(p>0)的焦點為F,其準線與雙曲線x2-y2=1相交于A,B兩點,若△ABF為等邊三角形,則p=$2\sqrt{3}$.

查看答案和解析>>

同步練習冊答案