6.?dāng)?shù)列{an}滿足an+1-an+an-1=0(n≥2),且a1=1,a2=-1,則a2011=( 。
A.1B.-1C.2D.-2

分析 通過遞推公式求出數(shù)列的前九項,從而確定數(shù)列周期為6,再由數(shù)列周期從而求解a2011=a1,求出結(jié)果.

解答 解:∵a1=1,a2=-1,且an+1-an+an-1=0(n≥2),
∴a3=0.a(chǎn)4=1,a5=-1,a6=0,a7=1,a8=-1,a9=0…
∴數(shù)列{an}是周期為3的周期函數(shù)
∴a2011=a3×670+1=a1=1.
故選:A.

點評 本題主要考查由遞推公式推導(dǎo)數(shù)列的通項公式,其中滲透了周期數(shù)列這一知識點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=log${\;}_{\frac{1}{2}}$sin(2πx+$\frac{π}{4}$)的單調(diào)遞減區(qū)間是(k-$\frac{1}{8}$,k+$\frac{1}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線的一個焦點坐標(biāo)為(0,2),且過點(1,$\sqrt{3}$),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知關(guān)于x的函數(shù)y=mx2-x-(m-1).
(1)m=0時,y=mx2-x-(m-1)是一次函數(shù);
(2)求證:對任何實數(shù)m,y=mx2-x-(m-1)的圖象與x都有公共點;
(3)若是關(guān)于x的二次函數(shù)y=mx2-x-(m-1)的圖象與x有兩個不同的公共點A、B (點A在點B左邊),圖象頂點為C,且△ABC是等腰直角三角形,求m的值;
(4)是否存在這樣的點P,使得對任何實數(shù)m,y=mx2-x-(m-1)的圖象都經(jīng)過P點?若存在,求出所有P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,與y=x-1為同一函數(shù)的是( 。
A.y=$\sqrt{{{(x-1)}^2}}$B.y=$\root{3}{{{{(x-1)}^3}}}$C.y=$\frac{{{x^2}-1}}{x+1}$D.$y={(\sqrt{x-1})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是(  )
A.該幾何體是由兩個同底的四棱錐組成的幾何體
B.該幾何體有12條棱、6個頂點
C.該幾何體有8個面,并且各面均為三角形
D.該幾何體有9個面,其中一個面是四邊形,其余均為三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.無窮數(shù)列{an}滿足${a_i}∈{N^*}$,且${a_i}≤{a_{i+1}}(i∈{N^*})$,對于數(shù)列{an},記${b_k}=min\left\{{n|{a_n}≥k}\right\}(k∈{N^*})$,其中min{n|an≥k}表示集合{n|an≥k}中的最小數(shù)
(1)若數(shù)列{an}:1,3,5,7,…,請寫出${b_1},{b_2},{b_{a_2}}$;
(2)已知Tn=${a_1}+{a_2}+…+{a_n}+{b_1}+{b_2}+…+{b_{a_n}},求證{T_n}=(n+1){a_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=a(a≠-2),an+1=2Sn+2n,n∈N
(Ⅰ)設(shè)bn=Sn+2n.求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)若數(shù)列{an}是單調(diào)遞增數(shù)列,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若全集U=R,集合M={x|x(x-2)≤0},N={1,2,3,4},則N∩∁UM={3,4}.

查看答案和解析>>

同步練習(xí)冊答案