分析 (I)利用等差數(shù)列的通項(xiàng)公式即可得出;
(II)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,則依題知d>0.
由2a3=a1+a5=10,又可得a3=5.
由a2a4=21,得(5-d)(5+d)=21,可得d=2.
∴a1=a3-2d=1.可得an=2n-1(n∈N*).
(Ⅱ)由(Ⅰ)得${b_n}=\frac{2n-1}{2^n}$,
∴Tn=$\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+…+\frac{2n-1}{2^n}$,①
∴$\frac{1}{2}{T_n}$=$\frac{1}{2^2}+\frac{3}{2^3}+\frac{5}{2^4}+…+\frac{2n-3}{2^n}+\frac{2n-1}{{{2^{n+1}}}}$,②
①-②得,$\frac{1}{2}{T_n}$=$\frac{1}{2}+\frac{2}{2^2}+\frac{2}{2^3}+…+\frac{2}{2^n}-\frac{2n-1}{{{2^{n+1}}}}$
=$\frac{{1-\frac{1}{2^n}}}{{1-\frac{1}{2}}}-\frac{1}{2}-\frac{2n-1}{{{2^{n+1}}}}$=$\frac{3}{2}-\frac{2n+3}{{{2^{n+1}}}}$,
∴Tn=$3-\frac{2n+3}{2^n}$.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,ex<0 | |
B. | 若a,b∈R,a+b=0的充要條件是$\frac{a}$=-1 | |
C. | 命題p:?x∈R,f(x)≥0,則?p:?x0∈R,f(x)<0 | |
D. | 命題“在△ABC中,若$\overrightarrow{AB}•\overrightarrow{BC}$<0,則△ABC為鈍角三角形的逆命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 65 | C. | 80 | D. | 130 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
指標(biāo)值分組 | [75,80) | [80,85) | [85,90) | [90,95) | 指標(biāo)值分組 | [75,80) | [80,85) | [85,90) | [90,95) | [75,80) | |
頻數(shù) | 10 | 30 | 40 | 20 | 頻數(shù) | 5 | 10 | 15 | 40 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com