函數(shù)f(x)=6x2的單調(diào)增區(qū)間是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的單調(diào)性即可求出f(x)的單調(diào)增區(qū)間.
解答: 解:f(x)的對稱軸為x=0;
∴f(x)的單調(diào)增區(qū)間是[0,+∞).
故答案為:[0,+∞).
點(diǎn)評:考查二次函數(shù)的對稱軸,以及二次函數(shù)的單調(diào)性及單調(diào)區(qū)間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中為全稱命題的是( 。
A、圓內(nèi)接三角形中有等腰三角形
B、存在一個實(shí)數(shù)與它的相反數(shù)的和不為0
C、矩形都有外接圓
D、過直線外一點(diǎn)有一條直線和已知直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:lg2+lg5-log
2
(46×27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在[0,3]上存在實(shí)數(shù)m,使-2k+4m>2m2+3成立,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C和y軸相切,圓心在直線x-2y=0上,且被直線y=x截得弦長為3
14
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=f1(x)≥0和y=f2(x)≥0在區(qū)間D上都是增函數(shù),那么函數(shù)y=
f1(x)
+
f2(x)
在區(qū)間D上也是增函數(shù),現(xiàn)設(shè)f(x)=
x-
1
x
+
1-
1
x

(1)求函數(shù)f(x)的定義域
(2)求函數(shù)f(x)的值域
(3)若x0=f(x0),求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3
4
x=(
4
3
5,求x的值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-4x+6在(1,3)處的切線的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2+3x|,x∈R,若函數(shù)y=f(x)-a|x-1|恰有4個零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A、(0,1)∪[9,+∞)
B、(0,1)∪(9,+∞)
C、(1,9]
D、(1,9)

查看答案和解析>>

同步練習(xí)冊答案