14.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的和為Sn,滿足4Sn=(an+1)2
(Ⅰ)求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),求證:b1+b2+…+bn<$\frac{1}{2}$.

分析 (Ⅰ)由數(shù)列遞推式求出數(shù)列首項(xiàng),取n=n+1得另一遞推式,作差后可得{an}是等差數(shù)列,由等差數(shù)列的通項(xiàng)公式得答案;
(Ⅱ)把數(shù)列{an}通項(xiàng)公式代入bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,由裂項(xiàng)相消法求和后即可證明b1+b2+…+bn<$\frac{1}{2}$.

解答 (Ⅰ)解:由4Sn=(an+1)2,
令n=1,得$4{S}_{1}={4a}_{1}=({a}_{1}+1)^{2}$,即a1=1,
又4Sn+1=(an+1+1)2
∴$4{a}_{n+1}=({a}_{n+1}+1)^{2}-({a}_{n}+1)^{2}$,整理得:(an+1+an)(an+1-an-2)=0.
∵an>0,∴an+1-an=2,則{an}是等差數(shù)列,
∴an=1+2(n-1)=2n-1;
(Ⅱ)證明:由(Ⅰ)可知,bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$,
則b1+b2+…+bn=$\frac{1}{1×3}+\frac{1}{3×5}+…+\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}(1-\frac{1}{2n+1})<\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.對(duì)于函數(shù)f(x)=eax-lnx,(a是實(shí)常數(shù)),下列結(jié)論正確的一個(gè)是( 。
A.a=1時(shí),B有極大值,且極大值點(diǎn)(1,3)
B.a=2時(shí),A有極小值,且極小值點(diǎn)x0∈(0,$\frac{1}{4}$)
C.a=$\frac{1}{2}$時(shí),D有極小值,且極小值點(diǎn)x0∈(1,2)
D.a<0時(shí),C有極大值,且極大值點(diǎn)x0∈(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.雙曲線$\frac{x^2}{{{m^2}-4}}+\frac{y^2}{m^2}$=1(m∈Z)的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{|{x+1}|+|{x-m}|-5}$(m>0)的定義域?yàn)镽
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若a,b∈R,且a+b+m=4,a2+b2+m2=16,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{x}{{\sqrt{3-x}}}$的定義域是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.將9個(gè)相同的小球放入3個(gè)不同的盒子,要求每個(gè)盒子中至少有一個(gè)小球,且每個(gè)盒子里的小球個(gè)數(shù)都不相同,則不同的放法種數(shù)為( 。
A.12B.15C.18D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)橢圓$\frac{x^2}{m^2}+\frac{y^2}{{{m^2}-1}}$=1(m>1)上一點(diǎn)到其左焦點(diǎn)的距離為3,到右焦點(diǎn)的距離為1,則橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某人最近7天收到的聊天信息數(shù)分別是5,10,6,8,9,7,11,則該組數(shù)據(jù)的方差為( 。
A.$\frac{24}{7}$B.4C.$\frac{16}{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an} 滿足an+1-an=2,且a3=8,則a6=14.

查看答案和解析>>

同步練習(xí)冊(cè)答案