13.已知實(shí)數(shù)a,b,c滿足不等式0<a<b<c<1,且M=2a,N=3-b,P=lnc,則M,N,P的大小關(guān)系是(  )
A.P<N<MB.P<M<NC.M<P<ND.N<P<M

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵實(shí)數(shù)a,b,c滿足不等式0<a<b<c<1,則M=2a>1,N=3-b=$(\frac{1}{3})^$∈(0,1),P=lnc<0,
∴P<N<M.
故選:A.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.過(guò)正方體ABCD-A1B1C1D1的頂點(diǎn)A作直線,使與直線AD1所成的角為30°,且與平面C1D1C所成的角為60°,則這樣的直線的條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.等差數(shù)列的第5項(xiàng)a5=8,且a1+a2+a3=6,則d=( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=cosx•ln$\frac{{x}^{2}+2}{{2(x}^{2}+1)}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.一本新出版的數(shù)學(xué)活動(dòng)課教材在某書(shū)店銷(xiāo)售,按事先擬定的價(jià)格進(jìn)行5天試銷(xiāo),每種進(jìn)價(jià)試銷(xiāo)1天,得到如下數(shù)據(jù):
單價(jià)x(元)1819202122
銷(xiāo)量y(冊(cè))6156504845
(Ⅰ)若y與x線性相關(guān),且回歸直線方程為y=mx+132,求實(shí)數(shù)m的值;
(Ⅱ)預(yù)計(jì)以后的銷(xiāo)售中,銷(xiāo)量與單價(jià)服從(Ⅰ)中的回歸直線方程,若每本數(shù)學(xué)活動(dòng)課教材的成本是14元,為了獲得最大利潤(rùn),該教材的單價(jià)應(yīng)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)已知扇形的周長(zhǎng)為10,面積為4,求扇形中心角的弧度數(shù);
(2)已知扇形的周長(zhǎng)為40,當(dāng)它的半徑和中心角取何值時(shí),才能使扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P是△ABC的中位線EF上任意一點(diǎn),且EF∥BC,實(shí)數(shù)x,y滿足$\overrightarrow{PA}+x\overrightarrow{PB}+y\overrightarrow{PC}=\overrightarrow 0$,設(shè)△ABC,△PBC,△PCA,△PAB的面積分別為S,S1,S2,S3,記$\frac{S_1}{S}={λ_1}$,$\frac{S_2}{S}={λ_2}$,$\frac{S_3}{S}={λ_3}$,則λ2•λ3取最大值時(shí),3x+y的值為(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.四個(gè)數(shù)40.2,30.5,30.4,log0.40.5的大小順序是( 。
A.${4^{0.2}}<{3^{0.4}}<{log_{0.4}}0.5<{3^{0.5}}$B.${log_{0.4}}0.5<{3^{0.4}}<{4^{0.2}}<{3^{0.5}}$
C.${log_{0.4}}0.5<{3^{0.5}}<{4^{0.2}}<{3^{0.4}}$D.${log_{0.4}}0.5<{4^{0.2}}<{3^{0.4}}<{3^{0.5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知偶函數(shù)f(x)的定義域?yàn)镽,且在(-∞,0)上是增函數(shù),則f(-$\frac{3}{4}$)與f(a2-a+1)的大小關(guān)系為( 。
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案