【題目】已知是橢圓的左、右焦點,恰好與拋物線的焦點重合,過橢圓的左焦點且與軸垂直的直線被橢圓截得的線段長為3.

(1)求橢圓的方程;

(2)已知點,直線,過斜率為的直線與橢圓交于,兩點,與直線交于點,若直線,的斜率分別是,,求證:無論取何值,總滿足的等差中項.

【答案】(1);(2)見解析

【解析】分析:(1):由題意把代入橢圓,求得,即可得到橢圓的方程;

(2)把直線方程為:,代入橢圓方程,利用根與系數(shù)的關(guān)系,求得

,把代入直線方程,得,又因為三點共線,所以,化簡整理得,即可作出證明.

詳解:(1):由題意,把代入橢圓,得

,因此橢圓方程為.

(2)直線方程為:,代入橢圓方程,

并整理得,

設(shè)則有

代入直線方程得:, 從而.

又因為三點共線,所以

所以

,又,所以,即無論取何值,

總滿足的等差中項.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線交于不同兩點分別過點、點作拋物線的切線,所得的兩條切線相交于點.

(Ⅰ)求證為定值:

(Ⅱ)求的面積的最小值及此時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為數(shù)列的前項和.任意正整數(shù),均有為遞增數(shù)列

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線處的切線方程為.

(1)求的值;

(2)求證:時,

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國明代珠算家程大位的名著《直指算法統(tǒng)宗》中有如下問題:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問:各該若干?”其意思為:“今有白米一百八十石,甲、乙、丙三人來分,他們分得的白米數(shù)構(gòu)成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”請問:乙應(yīng)該分得( )白米

A. 96石B. 78石C. 60石D. 42石

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”是手機推出的多款健康運動軟件中的一款,某學校140名老師均在微信好友群中參與了“微信運動”,對運動10000步或以上的老師授予“運動達人”稱號,低于10000步稱為“參與者”,為了解老師們運動情況,選取了老師們在4月28日的運動數(shù)據(jù)進行分析,統(tǒng)計結(jié)果如下:

運動達人

參與者

合計

男教師

60

20

80

女教師

40

20

60

合計

100

40

140

(1)根據(jù)上表說明,能否在犯錯誤概率不超過0.05的前提下認為獲得“運動達人”稱號與性別有關(guān)?

(2)從具有“運動達人”稱號的教師中,采用按性別分層抽樣的方法選取10人參加全國第四屆“萬步有約”全國健走激勵大賽某賽區(qū)的活動,若從選取的10人中隨機抽取3人作為代表參加開幕式,設(shè)抽取的3人中女教師人數(shù)為,寫出的分布列并求出數(shù)學期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】德國數(shù)學家科拉茨年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘(即),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到.對于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第項為(注:可以多次出現(xiàn)),則的所有不同值的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學名著,書中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機種植一株茶樹,求該株茶樹恰好種在圭田內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案