分析 (1)函數(shù)解析式利用二倍角的余弦函數(shù)公式化簡,整理后利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),找出ω的值,代入周期公式即可求出函數(shù)f(x)的最小正周期,根據(jù)正弦函數(shù)的單調(diào)性即可確定出f(x)的單調(diào)遞增區(qū)間;
(2)由x的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的值域確定出f(x)的最值.
解答 解:(1)f(x)=sin2x-$\sqrt{3}$cos2x+1=2sin(2x-$\frac{π}{3}$)+1,
∵ω=2,
∴函數(shù)f(x)最小正周期是T=π;
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2π+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
∴函數(shù)f(x)單調(diào)遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z;
(2)∵x∈[$\frac{π}{6}$,$\frac{π}{2}$]時(shí)
∴2x-$\frac{π}{3}$∈[0,$\frac{2π}{3}$],
∴f(x)=2sin(2x-$\frac{π}{3}$)+1的最小值為1,最大值為3.
故函數(shù)f(x)的值域是[1,3].
點(diǎn)評(píng) 此題考查了兩角和與差的正弦函數(shù)公式,函數(shù)恒成立問題,以及正弦函數(shù)的單調(diào)性,熟練掌握公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>8 | B. | k≥8 | C. | k>16 | D. | k≥16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=3x | C. | y=sinx | D. | y=log${\;}_{\frac{1}{2}}$(x+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com