3.從4位老師中選出3人到3個班級上課,每人任教1個班級,共有24種不同的選法.

分析 選3名教師分配到三個班級中即可,問題得以解決.

解答 解:從4位老師中選出3人到3個班級上課,每人任教1個班級,選3名教師分配到三個班級中,故有A43=24種,
故答案為:24.

點(diǎn)評 本題考查了簡單的排列組合問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面是關(guān)于復(fù)數(shù)z=$\frac{2}{1+i}$的四個命題:
p1:復(fù)數(shù)z的共軛復(fù)數(shù)為1+i;
p2:復(fù)數(shù)z的虛部為1;
p3:復(fù)數(shù)z對應(yīng)的點(diǎn)在第四象限; 
p4:|z|=$\sqrt{2}$.
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,∠A為銳角,且AB=$\sqrt{2}$,AC=$\sqrt{6}$,S△ABC=$\frac{\sqrt{3}}{2}$,則BC=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)tanx=2,則cos2x-2sinxcosx=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A,B為圓O:x2+y2=4與y軸的交點(diǎn)(A在B上),過點(diǎn)P(0,4)的直線l交圓O于M,N兩點(diǎn).
(1)若弦MN的長等于$2\sqrt{3}$,求直線l的方程;
(2)若M,N都不與A,B重合時,是否存在定直線m,使得直線AN與BM的交點(diǎn)恒在直線m上.若存在,求出直線m的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\sqrt{{e}^{x}-a}$(e為自然對數(shù)的底數(shù),a∈R),若存在x∈[0,1],使f(f(x))=x成立,則實(shí)數(shù)a的取值范圍是[1,e-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,有一景區(qū)的平面圖是一個半圓形,其中O為圓心,直徑AB的長為2km,C,D兩點(diǎn)在半圓弧上,且BC=CD,設(shè)∠COB=θ;
(1)當(dāng)$θ=\frac{π}{12}$時,求四邊形ABCD的面積.
(2)若要在景區(qū)內(nèi)鋪設(shè)一條由線段AB,BC,CD和DA組成的觀光道路,則當(dāng)θ為何值時,觀光道路的總長l最長,并求出l的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的方程為3x+4y-12=0,求滿足向量條件的直線l′的方程.
(1)l′與l平行且過點(diǎn)(-1,3);
(2)l′與l垂直且l′與兩坐標(biāo)軸圍成的三角形面積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)在某一個周期的圖象時,列表并填入的部分?jǐn)?shù)據(jù)如下表:
x$\frac{2π}{3}$x1$\frac{8π}{3}$x2x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-20
(Ⅰ)求x1,x2,x3的值及函數(shù)f(x)的表達(dá)式;
(Ⅱ)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,若直線y=k與函數(shù)y=f(x)g(x)的圖象在[0,π]上有交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案