分析 (1)連接OD,則∠COD=$\frac{π}{12}$,∠AOD=$\frac{5}{6}$π,即可求出四邊形ABCD的面積;
(2)利用余弦定理求出BC,CD,DA,可得l,利用換元、配方法,即可得出結(jié)論
解答 解:(1)連接OD,則∠COD=$\frac{π}{12}$,∠AOD=$\frac{5}{6}$π,∴四邊形ABCD的面積為2×$\frac{1}{2}$×1×1×sin$\frac{π}{12}$+$\frac{1}{2}$×1×1×sin$\frac{5}{6}$π=$\frac{\sqrt{6}-\sqrt{2}}{4}$+$\frac{1}{4}$;
(2)由題意,BC=CD=$\sqrt{2-2cosθ}$=2sin$\frac{θ}{2}$,DA=$\sqrt{2+2cos2θ}$=2cosθ,
∴l(xiāng)=2+4sin$\frac{θ}{2}$+2cosθ(0<θ<$\frac{π}{2}$),
令t=sin$\frac{θ}{2}$,則(0<t<$\frac{\sqrt{2}}{2}$),l=-4(t-$\frac{1}{2}$)2+5,
∴t=$\frac{1}{2}$時(shí),即θ=$\frac{π}{3}$,l的最大值為5.
點(diǎn)評(píng) 本題考查余弦定理,考查學(xué)生的計(jì)算能力,確定函數(shù)的解析式是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向右平移$\frac{3π}{4}$ | B. | 向右平移π | C. | 向左平移$\frac{π}{2}$ | D. | 向左平移π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行 | |
B. | 若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直 | |
C. | 垂直于同一直線的兩條直線相互平行 | |
D. | 若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com