17.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)作與x軸垂直的直線l,直線l與雙曲線交于A,B兩點(diǎn),與雙曲線的漸近線交于C,D兩點(diǎn),若3|AB|=2|CD|,則雙曲線的離心率為$\frac{3\sqrt{5}}{5}$.

分析 建立方程組求出交點(diǎn)A,B,C,D的坐標(biāo),建立方程關(guān)系,進(jìn)行求解即可.

解答 解:不妨設(shè)雙曲線的右焦點(diǎn)F(c,0),
當(dāng)x=c時(shí),$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,得$\frac{{y}^{2}}{^{2}}$=$\frac{{c}^{2}}{{a}^{2}}$-1=$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{^{2}}{{a}^{2}}$,
則y2=$\frac{^{4}}{{a}^{2}}$,則y=±$\frac{^{2}}{a}$,
則A(c,$\frac{^{2}}{a}$),B(c,-$\frac{^{2}}{a}$),
則|AB|=$\frac{2^{2}}{a}$,
雙曲線的漸近線為y=±$\frac{a}$x
則當(dāng)x=c時(shí),y=±$\frac{a}$•c=±$\frac{bc}{a}$
設(shè)C(c,$\frac{bc}{a}$),D(c,-$\frac{bc}{a}$),
則|CD|=$\frac{2bc}{a}$,
若3|AB|=2|CD|,
則3×$\frac{2^{2}}{a}$=2×$\frac{2bc}{a}$,
即3b=2c,
則b=$\frac{2}{3}$c,
b2=$\frac{4}{9}$c2=c2-a2
即$\frac{5}{9}$c2=a2,
即e2=$\frac{9}{5}$,
則e=$\sqrt{\frac{9}{5}}$=$\frac{3\sqrt{5}}{5}$,
故答案為:$\frac{3\sqrt{5}}{5}$

點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)條件建立方程關(guān)系求出交點(diǎn)坐標(biāo)是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過橢圓C的左焦點(diǎn)且傾斜角為60°的直線與圓x2+y2=a2相交,所得弦的長(zhǎng)度為$\sqrt{7}$
(1)求橢圓C的方程;
(2)設(shè)橢圓C的上頂點(diǎn)為M,若直線l:y=kx+m與橢圓C交于兩點(diǎn)A,B(A,B都不是上頂點(diǎn)),且直線MA與MB的斜率之積為$\frac{3}{4}$.
(a)求證:直線l過定點(diǎn);
(b)求△MAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知長(zhǎng)方形ABCD中,AD=$\sqrt{2}$,AB=2,E為AB中點(diǎn).將△ADE沿DE折起到△PDE,得到四棱錐P-BCDE,如圖所示.
(1)若點(diǎn)M為PC中點(diǎn),求證:BM∥平面PDE;
(2)當(dāng)平面PDE⊥平面BCDE時(shí),求四棱錐P-BCDE的體積;
(3)求證:DE⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.當(dāng)n=3,x=2時(shí),執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=5,則2$\overrightarrow{a}$-$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知O是銳角△ABC的外心,B=30°,若$\frac{cosA}{sinC}$$\overrightarrow{BA}$+$\frac{cosC}{sinA}$$\overrightarrow{BC}$=λ$\overrightarrow{BO}$,則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖的程序框圖,若程序運(yùn)行中輸出的一組數(shù)是(x,-12),則x的值為(  )
 
A.27B.81C.243D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的首項(xiàng)a1=1,且滿足an+1-an≤2n,an-an+2≤-3×2n,則a2016=22016-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥BC,AD⊥CD,PA=AD,△BCD是邊長(zhǎng)為$\sqrt{3}$的正三角形,AC與BD交于點(diǎn)O,點(diǎn)M是PB的中點(diǎn).
(1)求證:OM∥平面PAD;
(2)求三棱錐M-PCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案