5.已知數(shù)列{an}的首項a1=1,且滿足an+1-an≤2n,an-an+2≤-3×2n,則a2016=22016-1.

分析 an+1-an≤2n,可得an+2-an+1≤2n+1,又an-an+2≤-3×2n,可得an+1-an≥2n,于是an+1-an=2n,再利用“累加求和”方法即可得出.

解答 解:∵an+1-an≤2n
∴an+2-an+1≤2n+1,又an-an+2≤-3×2n,∴an+1-an≥2n,
∴2n≤an+1-an≤2n,
∴an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-1+…+2+1
=$\frac{{2}^{n-1}}{2-1}$=2n-1.
∴a2016=22016-1.
故答案為:22016-1.

點評 本題考查了遞推關(guān)系、不等式的性質(zhì)、“累加求和”方法、等比數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.當(dāng)實數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$時,ax+y≤4恒成立,則實數(shù)a的取值范圍是(-∞,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點作與x軸垂直的直線l,直線l與雙曲線交于A,B兩點,與雙曲線的漸近線交于C,D兩點,若3|AB|=2|CD|,則雙曲線的離心率為$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.三棱柱ABC-A1B1C1的底面是直角三角形,側(cè)棱垂直于底面,面積最大的側(cè)面是正方形,且正方形的中心是該三棱柱的外接球的球心,若外接球的表面積為16π,則三棱柱ABC-A1B1C1的最大體積為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.正態(tài)分布ξ~N(a,32),且P(ξ<2a-3)=P(ξ>a+2),則a的值為(  )
A.$\frac{7}{3}$B.$\frac{4}{3}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.己知集合A={x|2x≥1},B={x|x2-3x+2≥0},則A∩B=(  )
A.{x|x≤0}B.{x|1≤x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x<或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知k∈Z,$\overrightarrow{AB}$=(k,1),$\overrightarrow{BC}$=(k-2,-3),若|$\overrightarrow{AB}$|≤$\sqrt{17}$,則∠ABC是直角的概率是( 。
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x,2x+1,4x+5是等比數(shù)列{an}的前三項,則an等于( 。
A.2n-1B.3n-1C.2nD.3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z滿足z(2-i)=3+i,則$\overline z$=( 。
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

同步練習(xí)冊答案