8.執(zhí)行如圖的程序框圖,若程序運(yùn)行中輸出的一組數(shù)是(x,-12),則x的值為(  )
 
A.27B.81C.243D.729

分析 根據(jù)已知中的程序框圖,模擬程序的運(yùn)行過(guò)程,并分析程序執(zhí)行過(guò)程中,變量x、y值的變化規(guī)律,即可得出答案

解答 解:由程序框圖知:第一次運(yùn)行x=3,y=-3,(3-3);
第二次運(yùn)行x=9,y=-6,(9,-6);
第三次運(yùn)行x=27,y=-9,(27,-9);
第四次運(yùn)行x=81,y=-12,(81,-12);…;
所以程序運(yùn)行中輸出的一組數(shù)是(x,-12)時(shí),x=81.
故選:B.

點(diǎn)評(píng) 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次計(jì)算程序運(yùn)行的結(jié)果是解答此類問(wèn)題的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.觀察下列式子f1(x,y)=$\frac{x}{3y+3}$,f2(x,y)=$\frac{3x}{9{y}^{2}+7}$,f3(x,y)=$\frac{5x}{27{y}^{3}+13}$,f4(x,y)=$\frac{7x}{81{y}^{4}+23}$,…,根據(jù)以上事實(shí),由歸納推理可得,當(dāng)n∈N*,時(shí),fn(x,y)=$\frac{2n-1}{(3y)^{n}+{2}^{n}+2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖1,已知矩形ABCD中,AB=2,AD=2$\sqrt{2}$,E,F(xiàn)分別是AD,BC的中點(diǎn),對(duì)角線BD與EF交于O點(diǎn),沿EF將矩形ABFE折起,使平面ABFE與平面EFCD所成角為60°.在圖2中:
(1)求證:BO⊥DO;
(2)求平面DOB分割三棱柱AED-BFC所得上部分的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)作與x軸垂直的直線l,直線l與雙曲線交于A,B兩點(diǎn),與雙曲線的漸近線交于C,D兩點(diǎn),若3|AB|=2|CD|,則雙曲線的離心率為$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,AM=2.
(Ⅰ)求證:平面PAC⊥平面ABC;
(Ⅱ)求三棱錐P-MAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.三棱柱ABC-A1B1C1的底面是直角三角形,側(cè)棱垂直于底面,面積最大的側(cè)面是正方形,且正方形的中心是該三棱柱的外接球的球心,若外接球的表面積為16π,則三棱柱ABC-A1B1C1的最大體積為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.正態(tài)分布ξ~N(a,32),且P(ξ<2a-3)=P(ξ>a+2),則a的值為(  )
A.$\frac{7}{3}$B.$\frac{4}{3}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知k∈Z,$\overrightarrow{AB}$=(k,1),$\overrightarrow{BC}$=(k-2,-3),若|$\overrightarrow{AB}$|≤$\sqrt{17}$,則∠ABC是直角的概率是( 。
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某高校一專業(yè)在一次自主招生中,對(duì)20名已經(jīng)選拔入圍的學(xué)生進(jìn)行語(yǔ)言表達(dá)能力和邏輯思維能力測(cè)試,結(jié)果如表:
語(yǔ)言表達(dá)能力
人數(shù)
邏輯思維能力
一般良好優(yōu)秀
一般221
良好4m1
優(yōu)秀13n
由于部分?jǐn)?shù)據(jù)丟失,只知道從這20名參加測(cè)試的學(xué)生中隨機(jī)抽取一人,抽到語(yǔ)言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生的概率為$\frac{2}{5}$.
(1)求m,n的值;
(2)從參加測(cè)試的語(yǔ)言表達(dá)能力良好的學(xué)生中任意抽取2名,求其中至少有一名邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案