已知方程
x2
3+k
+
y2
2-k
=1表示橢圓,則實(shí)數(shù)k的取值范圍
 
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專(zhuān)題:圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:利用橢圓的簡(jiǎn)單性質(zhì)求解.
解答: 解:∵方程
x2
3+k
+
y2
2-k
=1表示橢圓,
3+k>0
2-k>0
3+k≠2-k
,解-3<k<2,且k≠-
1
2

∴實(shí)數(shù)k的取值范圍是(-3,-
1
2
)∪(-
1
2
,2).
故答案為:(-3,-
1
2
)∪(-
1
2
,2).
點(diǎn)評(píng):本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要注意橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|-5<x<4},集合B={x|x<-6或x>1},集合C={x|x-m<0},求實(shí)數(shù)m的取值范圍,使其分別滿(mǎn)足下列兩個(gè)條件:①C?(A∩B);②C?(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1,G為CC1的中點(diǎn),O為底面ABCD的中心.
求證:A1O⊥平面GBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-2,0),B(2,0)為橢圓C的左、右頂點(diǎn),F(xiàn)為其右焦點(diǎn),P是橢圓C上異于A,B的動(dòng)點(diǎn),且△APB面積的最大值為2
3

(I)求橢圓C的方程及離心率;
(Ⅱ)直線(xiàn)AP與橢圓在點(diǎn)B處的切線(xiàn)交于點(diǎn)D,試證明:無(wú)論直線(xiàn)AP繞點(diǎn)A如何轉(zhuǎn)動(dòng),以BD為直徑的圓總與直線(xiàn)PF相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于各數(shù)互不相等的正整數(shù)數(shù)組(i1,i2,i3,…in)(n是不小于3的正整數(shù)),若對(duì)任意的p,q∈{1,2,3,…,n},當(dāng)p<q時(shí)有ip>iq,則稱(chēng)ip,iq是該數(shù)組的一個(gè)“逆序”.一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱(chēng)為該數(shù)組的“逆序數(shù)”,如數(shù)組(2,3,1)的逆序數(shù)等于2.則數(shù)組(4,2,3,1)的逆序數(shù)等于
 
;若數(shù)組(i1,i2,i3,…in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁UA,∁UB,(∁UA)∩(∁UB),(∁UA)∪(∁UB),∁U(A∩B),∁U(A∪B),并指出其中相關(guān)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2=1},B={x|x2-2x-3=0},C={x|mx=1},
(1)求A∪B;
(2)若C⊆B,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線(xiàn)y2=2px的焦點(diǎn)與雙曲線(xiàn)x2-
y2
3
=1的右焦點(diǎn)重合,則p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

鈍角三角形ABC的三邊長(zhǎng)為a,a+1,a+2(a∈N),則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案