7.設(shè)函數(shù)f (x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π) 在x=π處取最小值.
(1)求φ的值;
(2)若f(2x+$\frac{π}{3}$)=m在[0,π]有兩個(gè)解x1,x2,求m的取值范圍,并求相應(yīng)的x1+x2的值.

分析 (1)利用倍角公式降冪,再由輔助角公式化積,結(jié)合f(π)=-1求得φ值;
(2)由(1)求得f(x)的解析式,得到f(2x+$\frac{π}{3}$)的解析式并畫出圖形,數(shù)形結(jié)合得答案.

解答 解:(1)f (x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx=(2cos2$\frac{φ}{2}$-1)sinx+cosxsinφ
=sinxcosφ+cosxsinφ=sin(x+φ).
由f(π)=sin(π+φ)=-1,得φ=$\frac{π}{2}$;
(2)由(1)知f(x)=sin(x+$\frac{π}{2}$)=cosx.
則f(2x+$\frac{π}{3}$)=cos(2x+$\frac{π}{3}$),
由f(2x+$\frac{π}{3}$)=m在[0,π]有兩個(gè)解x1,x2,
得cos(2x+$\frac{π}{3}$)=m在[0,π]有兩個(gè)解x1,x2
∵x∈[0,π],∴2x$+\frac{π}{3}$∈[$\frac{π}{3},\frac{7π}{3}$].
則cos(2x+$\frac{π}{3}$)∈[-1,1].
作出函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象如圖:
由圖可知,滿足f(2x+$\frac{π}{3}$)=m在[0,π]有兩個(gè)解x1,x2的m的取值范圍為(-1,$\frac{1}{2}$)∪($\frac{1}{2}$,1),
當(dāng)m∈(-1,$\frac{1}{2}$)時(shí),x1+x2=$\frac{2π}{3}$;
當(dāng)m∈($\frac{1}{2}$,1)時(shí),x1+x2=$\frac{5π}{3}$.

點(diǎn)評(píng) 本題考查三角函數(shù)中的恒等變換應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{x}$+alnx-1,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意的x>0,f(x)≥0恒成立,求a的取值范圍;
(3)若a=1,定義函數(shù)g(x)=[f(x)-$\frac{1}{x}$]•ex+x(其中e為自然對(duì)數(shù)的底數(shù)),問曲線y=g(x)上是否在不同的兩點(diǎn)M,N,使得直線MN的斜率等于1?若存在,求出符合條件的一條直線MN的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\underset{lim}{n→∞}$(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)…(1+$\frac{1}{{2}^{{2}^{n}}}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,⊙O是△ABC的外接圓,D是$\widehat{AC}$的中點(diǎn),BD交AC于點(diǎn)E.
(I)求證:AB•CD=BD•AE
(Ⅱ)若CD=2,AC=2$\sqrt{3}$,求⊙O的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x+1|+2|x-1|
(Ⅰ)求不等式f(x)≥x+3的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≥loga(x+1)在x≥0上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,AB是圓O的直徑,BC與圓O相切于B,∠ADC+∠DCO=180°
(Ⅰ)證明:∠BCO=∠DCO;
(Ⅱ)若⊙O半徑為R,求AD•OC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.矩形ABCD中,AB=2,AD=1,P為矩形內(nèi)部一點(diǎn),且AP=1.若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ∈R),則2λ+$\sqrt{3}$μ的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2-ax-3在區(qū)間(-∞,4]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x2-1|,g(x)=a|x|-1.
(Ⅰ)求不等式f(x)≤3的解集;
(Ⅱ)若f(x)≥g(x)對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案