9.?dāng)?shù)列{an}中,a1=1,前n項(xiàng)和為Sn,且an+1=2Sn(n∈N*
(1)求an;
(2)求Tn=a1+2a2+3a3+…+nan

分析 (1)根據(jù)數(shù)列an與Sn的關(guān)系進(jìn)行求解即可.
(2)利用錯(cuò)位相減法即可求Tn=a1+2a2+3a3+…+nan

解答 解:(1)∵an+1=2Sn=Sn+1-Sn,
∴3Sn=Sn+1,
即$\frac{{S}_{n+1}}{{S}_{n}}$=3,
則{Sn}是以公比q=3的等比數(shù)列,首項(xiàng)為S1=a1=1,
則Sn=3n-1,
則當(dāng)n≥2時(shí),an=Sn-Sn-1=3n-1-3n-2=2•3n-2,
當(dāng)n=1時(shí),a1=1不滿足an=2•3n-2,
∴an=$\left\{\begin{array}{l}{1,}&{n=1}\\{2•{3}^{n-2},}&{n≥2}\end{array}\right.$
(2)∵Tn=a1+2a2+3a3+…+nan
∴3Tn=3a1+2•3a2+3•3a3+…+n•3an=3a1+2a3+3a4+…+n•3an+1,
則兩式相減得2Tn=2a1-2a2-a3-…-an+n•3an+1
=2-4-(a3+…+an)+n•2•3n-1,
=-2-$\frac{6(1-{3}^{n-2})}{1-3}$)+n•2•3n-1
=-2-3(1-3n-2)+n•2•3n-1
=-5+(2n-1)•3n-1
當(dāng)n=1時(shí),Tn=a1+2a2+3a3+…+nan=a1=1,
故Tn=$\left\{\begin{array}{l}{1,}&{n=1}\\{-5+(2n-1)•{3}^{n-1},}&{n≥2}\end{array}\right.$

點(diǎn)評(píng) 本題主要考查數(shù)列通項(xiàng)公式的求解以及前n項(xiàng)和的計(jì)算,利用錯(cuò)位相減法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)y=$\sqrt{2{x}^{2}(1-2{x}^{2})}$的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)y=f(x)在定義域內(nèi)可導(dǎo),且圖象如圖所示,則此導(dǎo)函數(shù)y=f′(x)的圖象可知為圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.己知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{3}}{3}$,且它的一個(gè)焦點(diǎn)F1的坐標(biāo)為(0,1)
(Ⅰ)試求橢圓的標(biāo)準(zhǔn)方程:
(Ⅱ)設(shè)過(guò)焦點(diǎn)F1的直線與橢圓交于A,B兩點(diǎn),N是橢圓上不同于A、B的動(dòng)點(diǎn),試求△NAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的一條對(duì)稱軸為直線x=$\frac{π}{8}$.
(1)求φ;
(2)求單調(diào)區(qū)間;
(3)求f(x)在[0,$\frac{π}{2}$)上的最值;
(4)如何將sinx圖象變換成y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(diǎn)到焦點(diǎn)距離的最大值為$\sqrt{2}$+1,離心率為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓C交于A,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),當(dāng)|$\overrightarrow{PA}$-$\overrightarrow{PB}$|<$\frac{2\sqrt{5}}{3}$時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,sin2A=sinBsinC,∠A=$\frac{π}{3}$,則∠B等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知F1,F(xiàn)2是橢圓C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的兩個(gè)焦點(diǎn),過(guò)F1的直線與橢圓C交于M,N兩點(diǎn),則△F2MN的周長(zhǎng)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|log3(x2-2x)>1},B={x∈N|x<5},則( 。
A.A∩B=(3,5)B.A∪B=5C.A∪B={x|x≤5}D.A∩B={4}

查看答案和解析>>

同步練習(xí)冊(cè)答案