11.設(shè)拋物線$y=\frac{1}{4}{x^2}$上的一點(diǎn)P到x軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離為5.

分析 由題意可得點(diǎn)P的縱坐標(biāo)為4,由拋物線的定義可得點(diǎn)P到該拋物線焦點(diǎn)的距離等于點(diǎn)P到準(zhǔn)線x=-1的距離,由此求得結(jié)果.

解答 解:由于拋拋物線$y=\frac{1}{4}{x^2}$上的一點(diǎn)P到x軸的距離是4,故點(diǎn)P的縱坐標(biāo)為4.
再由拋物線$y=\frac{1}{4}{x^2}$的準(zhǔn)線為y=-1,
以及拋物線的定義可得點(diǎn)P到該拋物線焦點(diǎn)的距離等于點(diǎn)P到準(zhǔn)線的距離,
故點(diǎn)P到該拋物線焦點(diǎn)的距離是4-(-1)=5,
故答案為:5.

點(diǎn)評(píng) 本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z=|${({\sqrt{3}-i})i}|+{i^{2015}}$(x=my+t為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.復(fù)數(shù)$\frac{10i}{3+i}$=1+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.關(guān)于x的方程|log2x|-a=0的兩個(gè)根為x1,x2(x1<x2),則2x1+x2的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若$α∈({\frac{π}{2},π}),tanα=-\frac{1}{4}$,則sin(α+π)=-$\frac{\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an},{bn}的各項(xiàng)均為正數(shù),且對(duì)任意n∈N*,都有bn,an,bn+1成等差數(shù)列.a(chǎn)n,bn+1,an+1成等比數(shù)列,且b1=6,b2=12.
(I)求證數(shù)列$\left\{{\sqrt{a_n}}\right\}$是等差數(shù)列,并求an;
(Ⅱ)設(shè)Tn=$\frac{{2}^{\sqrt{{a}_{1}}}•_{1}}{2}+\frac{{2}^{\sqrt{{a}_{2}}}•_{2}}{3}+…+\frac{{2}^{\sqrt{{a}_{n}}}•_{n}}{n+1}$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{y≥3}\end{array}\right.$,則目標(biāo)函數(shù)z=x+3y的最小值為(  )
A.-3B.0C.3D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=|x-5|+|x-3|.
(Ⅰ)求函數(shù)f(x)的最小值m;
(Ⅱ)若正實(shí)數(shù)a,b足$\frac{1}{a}$+$\frac{1}$=$\sqrt{3}$,求證:$\frac{1}{{a}^{2}}$+$\frac{2}{^{2}}$≥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.學(xué)校餐廳每天固定供應(yīng)a名學(xué)生用餐,每星期一有A,B兩種A、B兩種菜可供選擇.調(diào)查表明,凡在這星期一選A種菜的,下星期一會(huì)有20%改選B種菜;而選B種菜的,下星期一會(huì)有30%改選A種菜.設(shè)第n個(gè)星期一選A、B兩種菜分別有an、bn分別表示第n個(gè)星期一選A的人數(shù)和選B的人數(shù).
(1)試用an-1表示an,判斷數(shù)列{an-$\frac{3}{5}$a}是否有為等比數(shù)列并說(shuō)明理由;
(2)若第一星期選A種菜的有$\frac{a}{2}$人,求an;并問(wèn)從第幾星期一開(kāi)始選A的人數(shù)超過(guò)B的人數(shù)的1.3倍.

查看答案和解析>>

同步練習(xí)冊(cè)答案