9.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,E、F分別為PC、BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$a.
(1)求證:EF∥平面PAD;
(2)求三棱錐E-PBD的體積.

分析 (1)連接AC,則F是AC的中點,E為PC的中點,要證EF∥平面PAD,只需證明EF∥PA即可;
(2)求三棱錐C-PBD的體積,轉(zhuǎn)化為P-BCD的體積,求出底面面積和高,即可求出三棱錐E-PBD的體積.

解答 (1)證明:連接AC,則F是AC的中點,E為PC的中點
故在△CPA中,EF∥PA,(3分)
且PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD(6分)
(2)解:取AD的中點M,連接PM,
∵PA=PD,
∴PM⊥AD(8分)
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PM⊥平面ABCD,(10分)
∴三棱錐E-PBD的體積=$\frac{1}{2}{V}_{C-PBD}=\frac{1}{2}{V}_{P-BCD}$=$\frac{1}{3}{S}_{△BCD}•PM$=$\frac{1}{2}•\frac{1}{3}•\frac{1}{2}a•a•\frac{1}{2}a$=$\frac{{a}^{3}}{24}$.(14分)

點評 本題考查直線和平面平行的判定,棱錐的體積,考查平面與平面垂直的性質(zhì),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.把極坐標系下的點坐標(4,$\frac{π}{4}$)化為直角坐標系下的點坐標為(  )
A.(2,2$\sqrt{2}$)B.(2$\sqrt{2}$,2)C.(2$\sqrt{2}$,2$\sqrt{2}$)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知:函數(shù)f(x)=$\sqrt{2}$(sinx-cosx).
(1)求函數(shù)f(x)的最小正周期和當(dāng)x∈(-$\frac{π}{12}$,π)時的值域;
(2)若函數(shù)f(x)的圖象過點(a,$\frac{6}{5}$),$\frac{π}{4}$<a<$\frac{3π}{4}$.求f($\frac{π}{4}$+a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.i為虛數(shù)單位,則(1-i)2的虛部為( 。
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(Ⅰ) 數(shù)列{an}滿足Sn=2n-an,先計算數(shù)列的前四項,再歸納猜想通項an
(Ⅱ) 用分析法證明:$\sqrt{6}+\sqrt{7}>2\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若關(guān)于x的方程sin2x+sinx-1+m=0有解,則實數(shù)m的取值范圍為[-1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知角α的頂點在坐標原點上,角α的始邊與x軸的正半軸重合,并且角α的終邊在射線y=-2x(x≤0)上,則cosα=$-\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點P在曲線y=x3-x+$\frac{2}{3}$上移動,設(shè)點P處切線的傾斜角為α,則α的取值范圍是( 。
A.[0,$\frac{π}{2}$]B.[0,$\frac{π}{2}$]∪(-$\frac{π}{2}$,0)C.[$\frac{3π}{4}$,π]D.[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將點(2,3)變成點(3,2)的伸縮變換是( 。
A.$\left\{\begin{array}{l}x'=\frac{2}{3}x\\ y'=\frac{3}{2}y\end{array}\right.$B.$\left\{\begin{array}{l}x'=\frac{3}{2}x\\ y'=\frac{2}{3}y\end{array}\right.$C.$\left\{\begin{array}{l}x'=y\\ y'=x\end{array}\right.$D.$\left\{\begin{array}{l}x'=x+1\\ y'=y-1\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊答案