分析 (1)要證明AD∥OC,我們要根據(jù)直線平行的判定定理,觀察已知條件及圖形,我們可以連接BD、OD,只要證明BD⊥OC,BD⊥AD
即可得證.
(2)因?yàn)椤袿的半徑為2,而其它線段長均為給出,故要想求AD•OC的值,我們要將其轉(zhuǎn)化用半徑相等或相關(guān)的線段積的形式,結(jié)合(1)的結(jié)論,我們易證明Rt△BAD∽Rt△ODC,根據(jù)相似三角形性質(zhì),不難得到轉(zhuǎn)化的思路.
解答 (1)證明:如圖,連接BD、OD.
∵直徑分別為AB、OC的兩圓相交于B、D兩點(diǎn)
∴BD⊥OC,BD⊥AD
∴AD∥OC;
(2)解:AO=OD,則∠ODA=∠A=∠DOC,
∴Rt△BAD∽Rt△ODC,
∵圓O的半徑為2,
∴AD•OC=AB•OD=8.
點(diǎn)評 根據(jù)求證的結(jié)論,使用分析推敲證明過程中所需要的條件,進(jìn)而分析添加輔助線的方法,是平面幾何證明必須掌握的技能,大家一定要熟練掌握,而在(2)中根據(jù)已知條件分析轉(zhuǎn)化的方向也是解題的主要思想.解決就是尋找解題的思路,由已知出發(fā),找尋轉(zhuǎn)化方向和從結(jié)論出發(fā)尋找轉(zhuǎn)化方向要結(jié)合在一起使用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.64 | B. | 2.68 | C. | 5.36 | D. | 6.64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2) | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2) | ||
C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≠±2) | D. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{12}$=1(x≠±2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -12 | B. | -20 | C. | 12 | D. | 20 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com