8.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-2n+1,△ABC的三邊長(zhǎng)之比為a3:a4:a5,則△ABC的最大角的余弦值為( 。
A.$\frac{\sqrt{2}-\sqrt{6}}{4}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.-$\frac{\sqrt{3}}{2}$

分析 根據(jù)題意和n≥2時(shí),an=sn-sn-1,分別求出a3、a4、a5,再根據(jù)比例關(guān)系設(shè)三角形的三邊為3k,5k,7k(k>0),判斷出最大角所對(duì)的邊,利用余弦定理求出余弦值.

解答 解:由Sn=n2-2n+1,得a3=S3-S2=4-1=3,同理得a4=9-4=5,a5=16-9=7,
可設(shè)a:b:c=a3:a4:a5,設(shè)三角形的三邊為3k,5k,7k(k>0),
則邊7k所對(duì)的角最大,令該三角形最大角為θ,
由余弦定理得,cosθ=$\frac{9{k}^{2}+25{k}^{2}-49{k}^{2}}{2•3k•5k}$=-$\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題考查數(shù)列中:n≥2時(shí)an=Sn-Sn-1的應(yīng)用,以及余弦定理的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直三棱柱ABC-A1B1C1中,AC=2,CB=CC1=4,∠BCA=90°,E、F、M、N分別是A1B1、AB、C1B1、CB的中點(diǎn),建立如圖所示的坐標(biāo)系.
(1)在平面ABB1A1內(nèi)找一點(diǎn)P,使△ABP為正三角形;
(2)能否在MN上求得點(diǎn)Q,使△AQB為以AB為斜邊的直角三角形?若能,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,有一塊矩形空地ABCD,要在這塊空地上開(kāi)辟一個(gè)內(nèi)接四邊形EFGH為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地EFGH面積為y.
(1)寫(xiě)出y關(guān)于x的函數(shù)解析式,并求出它的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積y最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)x,y滿足f(x+y)=f(x)+f(y)+$\frac{1}{2}$,且f($\frac{1}{2}$)=0.給出以下結(jié)論:
①f(0)=-$\frac{1}{2}$;②f(-1)=-$\frac{3}{2}$;③f(x)為R上減函數(shù);④f(x)+$\frac{1}{2}$為奇函數(shù);
其中正確結(jié)論的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,由圓O外一點(diǎn)A引圓的切線AB和割線ADE,B為切點(diǎn),DE為圓O的直徑,且AD=DB.延長(zhǎng)AB至C使得CE與圓O相切,連結(jié)CD交圓O于點(diǎn)F.
(Ⅰ)求$\frac{DE}{CE}$.
(Ⅱ)若圓O的半徑為1,求CF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,直徑分別為AB、OC的兩圓相交于B、D兩點(diǎn),O為AB的中點(diǎn).
(1)求證:AD∥OC;
(2)若OA=2,求AD•OC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.過(guò)點(diǎn)M(5,-2),且在x軸、y軸上截距互為相反數(shù)的直線方程為(  )
A.x+y-3=0B.x+y-3=0或2x+5y=0
C.x-y-7=0或2x+5y=0D.x-y-7=0或x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知a、β為銳角,且3sin2a+2sin2β=1,3sin2a-2sin2β=0.求a+2β值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.若cosθ<$\frac{\sqrt{3}}{2}$,sinθ>-$\frac{\sqrt{3}}{2}$,寫(xiě)出角θ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案