20.若復數(shù)(1-ai)2(i為虛數(shù)單位,a∈R)是純虛數(shù),則a=( 。
A.1B.-1C.0D.±1

分析 利用復數(shù)代數(shù)形式的乘法運算化簡,再由實部為0且虛部不為0求得a值.

解答 解:∵(1-ai)2=(1-a2)-2ai為純虛數(shù),
∴$\left\{\begin{array}{l}{1-{a}^{2}=0}\\{-2a≠0}\end{array}\right.$,解得a=±1.
故選:D.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點,已知$\overrightarrow{AM}=\overrightarrow{c}$、$\overrightarrow{AN}=\overrightarrowp7ftzpp$,試用$\overrightarrow{c}$、$\overrightarrow9x3r77h$表示$\overrightarrow{AB}$和$\overrightarrow{AD}$.
(2)在△ABC中,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$若P,Q,S為線段BC的四等分點,試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AP}+\overline{AQ}+\overrightarrow{AS}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,1),則|2$\overrightarrow{a}+\overrightarrow$|=( 。
A.$\sqrt{2}$B.$\sqrt{13}$C.5$\sqrt{2}$D.$\sqrt{2}+2\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2b-c)cosA=acosC.
(])求角A的大;
(2)設(shè)$\overrightarrow{m}$=(0,-1),$\overrightarrow{n}$=(cosB,2cos2$\frac{C}{2}$).試求|$\overrightarrow{m}$+$\overrightarrow{n}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,正方體ABCD-A1B1C1D1中,點E是A1D1的中點,點F是CE的中點.
(Ⅰ)求證:平面ACE⊥平面BDD1B1
(Ⅱ)求證:AE∥平面BDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,O是外接圓的圓心,若$\overrightarrow{OB}$•$\overrightarrow{OC}$=-$\frac{1}{2}$,∠A=60°,則△ABC周長的最大值3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足asinAsinB+bcos2A=$\sqrt{3}$a,cosB=$\frac{{\sqrt{6}}}{3}$,c=2$\sqrt{6}$
(Ⅰ)求sinA;
(Ⅱ) 求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知($\frac{4}{x}-\sqrt{\frac{x}{2}}$)9的展開式中x3的系數(shù)為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.y=cos($\frac{π}{3}$+x)沿x軸向左平移φ(φ>0)個單位后的圖象關(guān)于y軸對稱,則φ的最小值是( 。
A.$\frac{5}{6}π$B.$\frac{2}{3}π$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習冊答案