分析 (1)由Sn=2(an-1),得Sn-1=2(an-1-1),兩式相減,an=2an-2an-1,從而得到{an}是首項(xiàng)為2,公比為2的等比數(shù)列,由此能求出{an}的通項(xiàng)公式.
(2)由bn=$\frac{{a}_{n+1}}{({a}_{n}-1)({a}_{n+2}-1)}$=$\frac{{2}^{n+1}}{({2}^{n}-1)({2}^{n+2}-1)}$=$\frac{2}{3}$($\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+2}-1}$),利用裂項(xiàng)求和法能求出數(shù)列{bn}的前n項(xiàng)和Tn,從而證明Tn<$\frac{8}{9}$.
解答 解:(1)∵數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2(an-1),①
∴a1=S1=2(a1-1),
解得a1=2,
當(dāng)n≥2時(shí),Sn-1=2(an-1-1),②
①-②,得:an=2an-2an-1,n≥2,
整理,得an=2an-1,n≥2,
∴{an}是首項(xiàng)為2,公比為2的等比數(shù)列,
∴${a}_{n}={2}^{n}$.
證明:(2)bn=$\frac{{a}_{n+1}}{({a}_{n}-1)({a}_{n+2}-1)}$=$\frac{{2}^{n+1}}{({2}^{n}-1)({2}^{n+2}-1)}$=$\frac{2}{3}$($\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+2}-1}$),
∴數(shù)列{bn}的前n項(xiàng)和:
Tn=$\frac{2}{3}$(1-$\frac{1}{7}$+$\frac{1}{3}-\frac{1}{15}$+$\frac{1}{7}-\frac{1}{31}$+…+$\frac{1}{{2}^{n-2}-1}-\frac{1}{{2}^{n}-1}$+$\frac{1}{{2}^{n-1}-1}-\frac{1}{{2}^{n+1-1}}$+$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+2}-1}$)
=$\frac{2}{3}$(1+$\frac{1}{3}$-$\frac{1}{{2}^{n+1}-1}-\frac{1}{{2}^{n+2}-1}$)
=$\frac{8}{9}$-$\frac{2}{3}(\frac{1}{{2}^{n+1}-1}+\frac{1}{{2}^{n+2}-1})$<$\frac{8}{9}$.
∴Tn<$\frac{8}{9}$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和小于$\frac{8}{9}$的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 15 | C. | 16 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | $\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x=2kπ+π,k∈Z} | B. | {x|x=2kπ,k∈Z} | C. | $\{\left.x\right|x=2kπ+\frac{π}{2},k∈Z\}$ | D. | $\{\left.x\right|x=2kπ-\frac{π}{2},k∈Z\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | -3或2 | D. | 3或-2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com