1.使函數(shù)y=3-2cosx取得最小值時的x的集合為( 。
A.{x|x=2kπ+π,k∈Z}B.{x|x=2kπ,k∈Z}C.$\{\left.x\right|x=2kπ+\frac{π}{2},k∈Z\}$D.$\{\left.x\right|x=2kπ-\frac{π}{2},k∈Z\}$

分析 根據(jù)三角函數(shù)的性質(zhì)進行求解即可.

解答 解:∵-1≤cosx≤1,
∴當(dāng)cosx=1時,函數(shù)y=3-2cosx取得最小值,
此時x=2kπ,k∈Z,
即對應(yīng)的集合為{x|x=2kπ,k∈Z},
故選:B.

點評 本題主要考查余弦函數(shù)的性質(zhì),根據(jù)余弦函數(shù)的有界性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)$0<θ<\frac{π}{2}$,向量$\overrightarrow a=(sin2θ,cosθ)$,$\overrightarrow b=(1,-cosθ)$,若$\vec a$⊥$\vec b$,則tanθ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),則|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{17}$,若m$\overrightarrow{a}$+4$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線,則m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,滿足Sn=2(an-1).
(1)求{an}的通項公式;
(2)記bn=$\frac{{a}_{n+1}}{({a}_{n}-1)({a}_{n+2}-1)}$,數(shù)列{bn}的前n項和為Tn,證明:Tn<$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\overrightarrow{OA}=(1,1)$,$\overrightarrow{OB}=(-1,2)$,以$\overrightarrow{OA}$、$\overrightarrow{OB}$為邊作平行四邊形OACB,則$\overrightarrow{OC}$與$\overrightarrow{AB}$的夾角的余弦為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知tanx=2,則sin2x-sinxcosx=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某縣為了了解本地區(qū)的用電度數(shù),從全縣10萬戶居民中,其中3萬戶城鎮(zhèn)居民,7萬戶農(nóng)村居民,用分層抽樣方法抽取若干戶居民進行入戶調(diào)查,其中城鎮(zhèn)居民抽取了120戶,則農(nóng)村居民應(yīng)抽取的戶數(shù)為( 。
A.140B.280C.400D.420

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知定義在R上的奇函數(shù)f(x)=a×3x+3-x,a為常數(shù).
(1)求a的值;
(2)用單調(diào)性定義證明f(x)在[0,+∞)上是減函數(shù);
(3)解不等式f(x-1)+f(2x+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C的對稱中心為原點O,焦點在x軸上,左、右焦點分別為F1、F2,上頂點和右頂點分別為B,A,線段AB的中點為D,且kOD•kAB=-$\frac{1}{2}$,△AOB的面積為2$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過F1的直線1與橢圓C相交于M,N兩點,若|MN|=$\frac{12\sqrt{2}}{5}$,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案