17.已知函數(shù)f(x)=2x3-$\frac{1}{2}a$x2+ax+1在(0,+∞)有兩個極值,則實數(shù)a的取值范圍為(0,+∞).

分析 求導數(shù)得到f′(x)=6x2-ax+a,根據(jù)題意便知方程6x2-ax+a=0有兩個不同的正實根,這樣根據(jù)韋達定理便可得出關(guān)于a的不等式,從而得出a的取值范圍.

解答 解:f′(x)=6x2-ax+a;
∵f(x)在(0,+∞)上有兩個極值;
∴方程6x2-ax+a=0在(0,+∞)上有兩個不同實數(shù)根;
∴根據(jù)韋達定理$\frac{a}{6}>0$;
∴a>0;
∴實數(shù)a的取值范圍為(0,+∞).
故答案為:(0,+∞).

點評 考查基本初等函數(shù)的導數(shù)的計算公式,函數(shù)極值的概念,函數(shù)極值和導數(shù)的關(guān)系,韋達定理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=2mx3-3nx2+10(m,n>0)有兩個不同零點,則5lg2m+9lg2n的最小值是(  )
A.6B.$\frac{13}{9}$C.1D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖1,已知正方體ABCD-A1B1C1D1的棱長為a,M,N,Q分別是線段AD1,B1C,C1D1上的動點,當三棱錐Q-BMN的俯視圖如圖2所示時,三棱錐Q-BMN四個面中面積最大的是( 。
A.△MNQB.△BMNC.△BMQD.△BNQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.對于實數(shù)a、b,定義運算“?”:a?b=$\left\{\begin{array}{l}{b-a,a<b}\\{^{2}-{a}^{2},a≥b}\end{array}\right.$,設(shè)f(x)=(2x-3)?(x-3),且關(guān)于x的方程f(x)=k(k∈R)恰有三個互不相同的實根x1、x2、x3,則x1•x2•x3取值范圍為( 。
A.(0,3)B.(-1,0)C.(-∞,0)D.(-3,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知f(x)是定義域為R的單調(diào)函數(shù),且對任意的x∈R,都有f[f(x)-ex]=1,則函數(shù)g(x)=$\frac{f(x)+f(-x)}{f(x)-f(-x)}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在空間四邊形ABCD中,E,F(xiàn)分別是AB,BC的中點.求證:EF和AD為異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若集合A={x|y=$\sqrt{4-{x}^{2}}$},集合B={y|y=$\sqrt{4-{x}^{2}}$},則A∪B={x|-2≤x≤2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{a-lnx}{x}$在點(1,f(1))處的切線與x軸平行.
(1)求實數(shù)a的值及f(x)的極值;
(2)若對任意x1,x2∈[e2,+∞),有|$\frac{{f({x_1})-f({x_2})}}{{x_1^{\;}-x_2^{\;}}}$|>$\frac{k}{{x_1^{\;}•x_2^{\;}}}$,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x,y,z∈R,且$\frac{1}{x}$$+\frac{2}{y}$$+\frac{3}{z}$=1,則x+$\frac{y}{2}$+$\frac{z}{3}$的最小值是( 。
A.5B.6C.8D.9

查看答案和解析>>

同步練習冊答案