分析 (1)h(x)=f(x)-g(x)=lnx-m(1+$\frac{n-1}{x+1}$)(m>0)在定義域(0,+∞)內(nèi)不單調(diào),則函數(shù)h(x)在定義域(0,+∞)內(nèi)有極值,因此h′(x)=$\frac{1}{x}$+$\frac{m(n-1)}{(x+1)^{2}}$=0在(0,+∞)內(nèi)有解.化為:u(x)=x2+(2+mn-m)x+1=0,令u(x)=x2+(2+mn-m)x+1,u(0)=0,可得$\left\{\begin{array}{l}{△=(2+mn-m)^{2}-4>0}\\{-\frac{2+mn-m}{2}>0}\end{array}\right.$,化簡(jiǎn)解出即可.
(2)f($\frac{2a}{x}$)•f(eax)+f($\frac{x}{2a}$)=ax•$ln\frac{2a}{x}$+$ln\frac{x}{2a}$=axln(2a)-axlnx+lnx-ln2a=u(x).由x>0,可得a>0.假設(shè)存在實(shí)數(shù)a,使得f($\frac{2a}{x}$)•f(eax)+f($\frac{x}{2a}$)≤0對(duì)任意正實(shí)數(shù)x恒成立?u(x)max≤0.u′(x)=aln(2a)-alnx-a+$\frac{1}{x}$,利用其單調(diào)性可得:存在a>0,及其存在x0,>0,使得u′(x0)=0=aln(2a)-alnx0-a+$\frac{1}{{x}_{0}}$,使得u(x)取得極大值即最大值.由lnx0=ln(2a)-1+$\frac{1}{a{x}_{0}}$代入u(x)max≤0.解出即可.
解答 解:(1)h(x)=f(x)-g(x)=lnx-m(1+$\frac{n-1}{x+1}$)(m>0)在定義域(0,+∞)內(nèi)不單調(diào),
則函數(shù)h(x)在定義域(0,+∞)內(nèi)有極值,
因此h′(x)=$\frac{1}{x}$+$\frac{m(n-1)}{(x+1)^{2}}$=0在(0,+∞)內(nèi)有解.
化為:u(x)=x2+(2+mn-m)x+1=0,令u(x)=x2+(2+mn-m)x+1,
∵u(0)=0,∴$\left\{\begin{array}{l}{△=(2+mn-m)^{2}-4>0}\\{-\frac{2+mn-m}{2}>0}\end{array}\right.$,化為mn-m<-4,
令m-n=t,可得n=m-t.
∴m(m-t)-m<-4,
化為t>$m+\frac{4}{m}$-1,m>0.
∴t的取值范圍是t>$m+\frac{4}{m}$-1,m>0.
(2)f($\frac{2a}{x}$)•f(eax)+f($\frac{x}{2a}$)=ax•$ln\frac{2a}{x}$+$ln\frac{x}{2a}$=axln(2a)-axlnx+lnx-ln2a=u(x).
∵x>0,∴a>0.
假設(shè)存在實(shí)數(shù)a,使得f($\frac{2a}{x}$)•f(eax)+f($\frac{x}{2a}$)≤0對(duì)任意正實(shí)數(shù)x恒成立?u(x)max≤0.
u′(x)=aln(2a)-alnx-a+$\frac{1}{x}$,
∴u′(x)在x∈(0,+∞)單調(diào)遞減,
x→0+,u′(x)→+∞;x→+∞,u′(x)→-∞.
因此存在a>0,及其存在x0,>0,使得u′(x0)=0=aln(2a)-alnx0-a+$\frac{1}{{x}_{0}}$,使得u(x)取得極大值即最大值.
由lnx0=ln(2a)-1+$\frac{1}{a{x}_{0}}$代入可得:
u(x)max=ax0ln(2a)-ax0lnx0+lnx0-ln(2a)=ax0-1+lnx0-ln(2a)=ax0-1-ln(2a)+ln(2a)-1+$\frac{1}{a{x}_{0}}$=$a{x}_{0}+\frac{1}{a{x}_{0}}$-2,
由于$a{x}_{0}+\frac{1}{a{x}_{0}}$-2≥2-2=0,因此只能去等號(hào),當(dāng)且僅當(dāng)ax0=1時(shí)取等號(hào).
由于x0滿足lnx0=ln(2a)-1+$\frac{1}{a{x}_{0}}$,∴l(xiāng)n$\frac{1}{a}$=ln(2a)-1+1,解得a=$\frac{\sqrt{2}}{2}$.
故存在實(shí)數(shù)a=$\frac{\sqrt{2}}{2}$>0,滿足條件.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化方法、對(duì)數(shù)的運(yùn)算性質(zhì),考查了分析問(wèn)題與解決問(wèn)題的能力、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4(3$\sqrt{3}$+4) | B. | 8(2$\sqrt{3}$+1) | C. | 12(2$\sqrt{3}$+1) | D. | 3($\sqrt{3}$+8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行或相交 | B. | 平行或異面 | C. | 相交或異面 | D. | 都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com