5.如果一條直線與一個平面平行,則這條直線與這個平面內(nèi)直線的位置關(guān)系為( 。
A.平行或相交B.平行或異面C.相交或異面D.都有可能

分析 以正方體為載體,能判斷出如果一條直線與一個平面平行,則這條直線與這個平面內(nèi)直線的位置關(guān)系為相交或異面.

解答 解:如圖,在正方體ABCD-A1B1C1D1中,直線A1B1與平面ABCD平行,
AB?面ABCD,BC?面ABCD,
A1B1與AB平行,A1B1與BC異面,
∴一條直線與一個平面平行,
則這條直線與這個平面內(nèi)直線的位置關(guān)系為相交或異面.
故選:C.

點評 本題考查直線與平面內(nèi)直線的位置關(guān)系的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知$a=4,c=2\sqrt{2}$,$cosA=-\frac{{\sqrt{2}}}{4}$.
(1)求sinC和b的值;
(2)求$sin(2A-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=lnx,g(x)=m(1+$\frac{n-1}{x+1}$)(m>0).
(1)若函數(shù)y=f(x)-g(x)在定義域內(nèi)不單調(diào),求m-n的取值范圍;
(2)是否存在實數(shù)a,使得f($\frac{2a}{x}$)•f(eax)+f($\frac{x}{2a}$)≤0對任意正實數(shù)x恒成立?若存在,求出滿足條件的實數(shù)a;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.用[x]表示不超過x的最大整數(shù),若函數(shù)y=kx-[x]恰好有三個零點,則實數(shù)k的取值范圍是 ( 。
A.($\frac{2}{3}$,2)B.($\frac{2}{3}$,$\frac{3}{4}$]∪[$\frac{3}{2}$,2)C.($\frac{2}{3}$,$\frac{4}{3}$]∪[$\frac{3}{2}$,2)D.($\frac{2}{3}$,1]∪[$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知sinα+cosα=$\frac{1}{3}$,其中0<α<π,求sinα-cosαθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.曲線y=cosx(0≤x≤$\frac{3π}{2}$與x軸以及直線x=$\frac{3π}{2}$所圍成的面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正弦定理的內(nèi)容是( 。
A.$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$B.$\frac{a}{cosA}=\frac{cosB}=\frac{c}{cosC}$
C.$\frac{a}{sinA}=\frac{cosB}=\frac{c}{tanC}$D.以上結(jié)果都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}-1}{{x}^{2}-3x+2},x≠1}\\{-2,x=1}\end{array}\right.$,在x=1處是否連續(xù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)的圖象是由兩條線段組成的折線段(如圖所示),則函數(shù)f(x)的表達(dá)式為f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,-2≤x≤0}\\{2x+1,0≤x≤1}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案