A. | 有最大值0 | B. | 最大值2 | C. | 最小值0 | D. | 最小值-6 |
分析 作出不等式組對應的平面區(qū)域,利用數(shù)形結合即可得到結論.
解答 解:由z=y-2x,得y=2x+z,
作出不等式對應的可行域,
平移直線y=2x+z,
由平移可知當直線y=2x+z經過點A時,
直線y=2x+z的截距最大,此時z取得最值,無最小值.
由$\left\{\begin{array}{l}{x-y+1=0}\\{y=-x+3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即A(1,2)代入z=y-2x,得z=2-2=0,
即z=y-2x的最大值為0.
故選:A.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com