19.已知函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$是奇函數(shù)(a∈R).
(1)求實數(shù)a的值;
(2)求函數(shù)y=f(x)的值域;
(3)試判斷函數(shù)f(x)在(-∞,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

分析 (1)利用f(x)是奇函數(shù),f(-x)=-f(x),即可求實數(shù)a的值;
(2)f(x)=1-$\frac{2}{{2}^{x}+1}$,即可求函數(shù)y=f(x)的值域;
(3)利用單調(diào)性定義證明結(jié)論.

解答 解:(1)由題意可得:f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$
∵f(x)是奇函數(shù),∴f(-x)=-f(x)
即$\frac{a•{2}^{-x}+a-2}{{2}^{-x}+1}$=-$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$
∴a-2=-a,即a=1
即f(x)=1-$\frac{2}{{2}^{x}+1}$;                             (3分)
(2)f(x)=1-$\frac{2}{{2}^{x}+1}$,${2^x}+1>1∴\frac{2}{{{2^x}+1}}∈({0,2})$,∴f(x)∈(-1,1)(6分)
(3)設(shè)x1,x2為區(qū)間(-∞,+∞)內(nèi)的任意兩個值,且x1<x2,
則0<${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,
∵f(x1)-f(x2)=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$<0
即f(x1)<f(x2),
∴f(x)是(-∞,+∞)上的增函數(shù).(12分)

點評 本題考查了函數(shù)的奇偶性、單調(diào)性、指數(shù)函數(shù)的運算,考查了計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=sin2ωx在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上是減函數(shù).則實數(shù)ω的取值范圍是[-$\frac{3}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ln$\frac{3x}{2}-\frac{2}{x}$,則函數(shù)f(x)的零點所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,則f(f(-4))的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.冪函數(shù)y=(m2-2m-2)x-4m-2在(0,+∞)上為增函數(shù),則實數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若某多面體的三視圖如圖所示,則此多面體的表面積是( 。
A.6B.18C.8+3$\sqrt{2}$D.3+4$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤8}\\{{x}^{2}-20x+99,x>8}\end{array}\right.$,若a、b、c、d互不相同,且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是(96,99).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求證:以拋物線y2=2px(p>0)上的任意不同的四點為頂點的四邊形不可能是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知冪函數(shù)f(x)=xα的圖象過$(2,\sqrt{2})$,則f(x)=${x}^{\frac{1}{2}}$.

查看答案和解析>>

同步練習(xí)冊答案