1.在平面直角坐標(biāo)系內(nèi),已知B(-3,3$\sqrt{3}$),C(3,-3$\sqrt{3}$),且H(x,y)是曲線x2+y2=1上任意一點(diǎn),則$\overline{BH}$•$\overline{CH}$的值為-35.

分析 求出$\overrightarrow{BH},\overrightarrow{CH}$的坐標(biāo),計(jì)算數(shù)量積.

解答 解:$\overrightarrow{BH}$=(x+3,y-3$\sqrt{3}$),$\overrightarrow{CH}$=(x-3,y+3$\sqrt{3}$),∴$\overline{BH}$•$\overline{CH}$=(x+3)(x-3)+(y-3$\sqrt{3}$)(y+3$\sqrt{3}$)=x2-9+y2-27=1-36=-35.
故答案為-35.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若函數(shù)f(x)=asinx+bcosx(a,b∈R),非零向量$\overrightarrow{m}$=(a,b),我們稱$\overrightarrow{m}$為函數(shù)f(x)的“伙伴向量”,f(x)為向量$\overrightarrow{m}$的“伙伴函數(shù)”.
(1)已知函數(shù)f(x)=($\sqrt{3}$sinωx+cosωx)cosωx-$\frac{1}{2}$,其中ω>0,且函數(shù)f(x)的最小正周期為2π,求f(x)的“伙伴向量”$\overrightarrow{m}$的模;
(2)對(duì)于函數(shù)φ(x)=sinxcos2x,是否存在“伙伴向量”?若存在,求出φ(x)的“伙伴向量”,若不存在,請(qǐng)說明理由;
(3)記向量$\overrightarrow{n}$=(1,$\sqrt{3}$)的“伙伴函數(shù)”為h(x),如果關(guān)于x的方程h(x)-k=0在[0,$\frac{π}{2}$]內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平行四邊形ABCD中,O為對(duì)角線交點(diǎn),試用$\overrightarrow{BA}$、$\overrightarrow{BC}$表示$\overrightarrow{CO}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直角坐標(biāo)系xOy中,函數(shù)y=f(x)的圖象記為I′,若在I′上任取一點(diǎn)M,都能在I′上找到一點(diǎn)N,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,則稱圖象I′為“優(yōu)美圖象”.下列函數(shù)的圖象為“優(yōu)美圖象”的是(  )
A.y=2x+1B.y=log3(x-2)C.y=$\frac{2}{x}$D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)實(shí)數(shù)m≠0,直線x=-6m與x+2y=0交于點(diǎn)P,角α的終邊經(jīng)過點(diǎn)P,求出$\frac{2sin2α+cos2α+1}{2cosα}$+$\frac{8tanα}{5}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)an=$\frac{8n}{3}$•cosnπ•sin$\frac{nπ}{3}$•(sin$\frac{n+1}{3}$π-$\frac{1}{2}$sin$\frac{nπ}{3}$)(n∈N*),則數(shù)列{an}的前2015項(xiàng)和S2015=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求值:sin26°+cos236°+sin6°cos36°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線l:(2a-1)x-(a+3)y-(a-11)=0(a∈R)交x軸正半軸于點(diǎn)A,y軸正半軸于點(diǎn)B,當(dāng)三角形AOB(O為坐標(biāo)原點(diǎn))面積最小時(shí)a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直三棱柱的底面是等腰直角三角形,斜邊長(zhǎng)$\sqrt{2}$,且其外接球的面積是16π,則該三棱柱的側(cè)棱長(zhǎng)為( 。
A.$\sqrt{14}$B.2$\sqrt{3}$C.4$\sqrt{6}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案