A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 根據(jù)條件,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=0$,$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,進(jìn)行數(shù)量積的運(yùn)算,便可得到${\overrightarrow{m}}^{2}-(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})•\overrightarrow{m}=0$,從而得到$|\overrightarrow{m}|=\sqrt{2}cosθ$,其中θ表示$\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}$和$\overrightarrow{m}$的夾角,這樣便可得出$|\overrightarrow{m}|$的最大值.
解答 解:$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$是平面內(nèi)兩個(gè)互相垂直的單位向量;
∴$(\overrightarrow{m}-\overrightarrow{{e}_{1}})•(\overrightarrow{m}-\overrightarrow{{e}_{2}})={\overrightarrow{m}}^{2}-(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})•\overrightarrow{m}=0$;
∴$|\overrightarrow{m}{|}^{2}-|\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}||\overrightarrow{m}|cosθ=0$,θ為向量$\overrightarrow{m}$和向量$\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}$所夾角;
∴$|\overrightarrow{m}|=|\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}|cosθ=\sqrt{2}cosθ$$≤\sqrt{2}$;
∴$|\overrightarrow{m}|$的最大值為$\sqrt{2}$.
故選:B.
點(diǎn)評(píng) 考查單位向量的概念,向量垂直的充要條件,向量數(shù)量積的運(yùn)算及計(jì)算公式,余弦函數(shù)的值域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 已知F1(-4,0),F(xiàn)2(4,0),到兩點(diǎn)F1,F(xiàn)2的距離之和大于8的點(diǎn)的軌跡是橢圓 | |
B. | 已知F1(-4,0),F(xiàn)2(4,0),到兩點(diǎn)F1,F(xiàn)2的距離之和等于6的點(diǎn)的軌跡是橢圓 | |
C. | 到點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和等于從點(diǎn)(5,3)到F1,F(xiàn)2的距離之和的點(diǎn)的軌跡是橢圓 | |
D. | 到點(diǎn)F1(-4,0),F(xiàn)2(4.0)距離相等的點(diǎn)的軌跡是橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com