某個幾何體的三視圖如圖所示,其中俯視圖為等邊三角形,則該幾何體的表面積是( 。
A、
3
B、6+
3
C、6+2
3
D、6+3
3
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:由幾何體的三視圖知:該幾何體是正三棱柱ABC-A1B1C1,底面△ABC的邊長是2,高AA1=1,由此能求出該幾何體的表面積.
解答: 解:由幾何體的三視圖知:
該幾何體是正三棱柱ABC-A1B1C1,
底面△ABC的邊長是2,高AA1=1,
∴該幾何體的表面積:
S=2×(
1
2
×2×2×sin60°)
+3×(2×1)
=6+2
3

故選:C.
點評:本題考查幾何體的表面積的求法,是中檔題,解題時要認真審題,注意三視圖的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

解不等式:loga
2x+3
>loga
x(a>0且a≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某自來水公司要在公路兩側(cè)鋪設水管,公路為東西方向,在路北側(cè)沿直線鋪設線路l1,在路南側(cè)沿直線鋪設線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1與l2接通.已知AB=60m,BC=80m,公路兩側(cè)鋪設水管的費用為每米1萬元,穿過公路的EF部分鋪設水管的費用為每米2萬元,設∠EFB=
π
2
-α,矩形區(qū)域內(nèi)的鋪設水管的總費用為W.
(1)求W關(guān)于α的函數(shù)關(guān)系式;
(2)求W的最小值及相應的角α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(1-x)=x,則f(x)的表達式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sin(ωx+
π
6
)(ω>0)和g(x)=2cos(2x+φ)+1(|φ|<
π
2
)的圖象的對稱軸完全相同,則φ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動直線x=a與函數(shù)f(x)=
3
sin(x+
π
6
)與g(x)=cos(x+
π
6
)的圖象分別交于M、N兩點,則|MN|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x|(a-x),a∈R.
(1)若函數(shù)f(x)在x∈[0,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
(2)對于確定的正數(shù)b,不等式|x|(a-x)≤b,對x∈[-1,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下是關(guān)于函數(shù)f(x)=
4|x|
x2+1
的四個命題:
①f(x)的圖象關(guān)于y軸對稱;
②f(x)在區(qū)間[-1,0]∪[1,+∞)上單調(diào)遞減;
③f(x)在x=-1處取得極小值,在x=1處取得極大值;
④f(x)有最大值,無最小值;
⑤若方程f(x)-k=0至少有三個不同的實根,則實數(shù)k的取值范圍是(0,2).
其中為真命題的是
 
(請?zhí)顚懩阏J為是真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案