分析 根據(jù)極坐標(biāo)與直角坐標(biāo)的對應(yīng)關(guān)系得出l的普通方程,根據(jù)圖象變換先寫出C2的普通方程,再轉(zhuǎn)化為參數(shù)方程.
解答 解:∵ρ(2cosθ-sinθ)=6,即2ρcosθ-ρsinθ-6=0.
∴直線l的直角坐標(biāo)方程為:2x-y-6=0,
曲線C2的直角坐標(biāo)方程為:${(\frac{x}{{\sqrt{3}}})^2}+{(\frac{y}{2})^2}=1$,
令$\frac{x}{\sqrt{3}}$=cosθ,$\frac{y}{2}$=sinθ,則x=$\sqrt{3}$cosθ,y=2sinθ.
∴曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=2sinθ\end{array}\right.(θ為參數(shù))$.
點(diǎn)評 本題考查了極坐標(biāo)方程參數(shù)方程與普通方程的轉(zhuǎn)化,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow{c}$-$\overrightarrow{a}$ | B. | $\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}•\overrightarrow{c}-\overrightarrow{a}$ | C. | $\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}-\overrightarrow{a}$ | D. | $\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}{|}^{2}}•\overrightarrow{c}-\overrightarrow{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,f(x0)=0 | |
B. | 若x0是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,x0)上單調(diào)遞減 | |
C. | 函數(shù)f(x)的圖象是中心對稱圖形 | |
D. | 若x0是f(x)的極值點(diǎn),則f′(x0)=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -4或0 | C. | 4或0 | D. | -4或4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -3 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com