6.已知函數(shù)f(x)=x+$\frac{a}{x}$+lnx(a∈R),在(1,+∞)上單調(diào)遞增,則a的取值范圍為(-∞,2].

分析 由題意可得,當(dāng)x>1時(shí),y′=1-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$≥0,即a≤x2+x,由此求得a的范圍.

解答 解:∵函數(shù)f(x)=x+$\frac{a}{x}$+lnx在(1,+∞)內(nèi)單調(diào)遞增,
∴當(dāng)x>1時(shí),y′=1-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$≥0,
即a≤x2+x,
由x2+x在x>1遞增,可得x2+x>2,
∴a≤2,
即a的取值范圍為(-∞,2],
故答案為:(-∞,2].

點(diǎn)評(píng) 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查不等式恒成立問(wèn)題的解法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( 。
A.y=-x+1B.y=$\sqrt{x}$C.y=x2-4x+5D.y=$\frac{2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=2sin(2x+$\frac{π}{6}$)+1+a,x∈[0,$\frac{3π}{4}$]
(1)求單調(diào)遞增區(qū)間;
(2)若方程f(x)=0在[0,$\frac{3π}{4}$]上有兩個(gè)不同的實(shí)根.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在各項(xiàng)均為正數(shù)的數(shù)列{an}中,若a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$(n∈N+).
(1)試判斷數(shù)列{an}的單調(diào)性,并證明對(duì)任意的n∈N+,恒有an<1;
(2)求證:對(duì)一切n∈N+,有an>$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$f(\sqrt{x}+1)=x+2\sqrt{x}$,則函數(shù)f(x+1)的解析式為f(x+1)=x2+2x,x≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.用長(zhǎng)8m的鋁材,做成一個(gè)“H”字形窗框,求:高和寬各為多少時(shí)窗戶的透亮面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.畫(huà)出下列函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖(有條件的請(qǐng)用計(jì)算器或計(jì)算機(jī)檢驗(yàn)).
(1)y=$\frac{1}{2}$sinx;
(2)y=sin3x;
(3)y=sin(x-$\frac{π}{3}$);
(4)y=2sin(2x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若方程x2+y2-x+2y+m=0表示一個(gè)圓,則m的取值范圍為(-∞,$\frac{5}{4}$);此時(shí),它的圓心坐標(biāo)為($\frac{1}{2}$,-1);若m=1,則半徑為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖所示;
(1)分別寫(xiě)出終邊落在0A,0B位置上的角的集合;
(2)寫(xiě)出終邊落在陰影部分(包括邊界)的角的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案