14.f(x)=$\left\{{\begin{array}{l}{\frac{1}{2}}&{(-1≤x≤1)}\\{\frac{1}{2}x}&{(1<x≤4)}\end{array}}$.
(1)用直尺或三角板畫出y=f(x)的圖象;
(2)求f(x)的最小值和最大值以及單調(diào)區(qū)間.

分析 (1)分別取直線上對(duì)應(yīng)的兩點(diǎn),連接即可得函數(shù)的圖象.
(2)根據(jù)函數(shù)的圖象即可求出函數(shù)的最值和單調(diào)區(qū)間.

解答 解:(1)在坐標(biāo)系中分別求兩點(diǎn)(-1,$\frac{1}{2}$),(1,$\frac{1}{2}$),兩點(diǎn)連線,
在在坐標(biāo)系中分別求兩點(diǎn)(1,$\frac{1}{2}$),(4,2),兩點(diǎn)連線得函數(shù)f(x)的圖象如圖:

(2)由圖象知函數(shù)的最小值為$\frac{1}{2}$,最大值為2,
函數(shù)的單調(diào)遞增區(qū)間為[1,2].

點(diǎn)評(píng) 本題主要考查分段函數(shù)的圖象和性質(zhì),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點(diǎn)M為PC的中點(diǎn),點(diǎn)E為BC邊上的點(diǎn),且$\frac{BE}{EC}$=λ.
(Ⅰ)求證:平面ADM⊥平面PBC;
(Ⅱ)是否存在實(shí)數(shù)λ,使得二面角P-DE-B的余弦值為$\frac{\sqrt{2}}{2}$?若存在,求出實(shí)數(shù)λ的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個(gè)幾何體的三視圖,則該幾何體的體積為( 。
A.36πB.45πC.32πD.144π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個(gè)幾何體由多面體和旋轉(zhuǎn)體的整體或一部分組合而成,其三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{3}{2}$πB.π+1C.π+$\frac{1}{6}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)g(x)=x2-2(x∈R),f(x)=$\left\{\begin{array}{l}{g(x)+x+4,x<g(x)}\\{g(x)-x,x≥g(x)}\end{array}\right.$,求f(f(0))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若某空間幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),可得該幾何體的外接球的體積是( 。
A.$\frac{{\sqrt{2}}}{3}$πB.$\frac{4}{3}$πC.$\sqrt{6}$πD.8$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=$\left\{\begin{array}{l}{1,x∈[0,1]}\\{x-3,x∉[0,1]}\end{array}\right.$,若f(f(x))=1成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知兩圓的半徑分別為1cm和2cm,圓心距是3cm,那么這兩個(gè)圓的公切線條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\overrightarrow{a}$=(2,k),$\overrightarrow$=(1,1),滿足$\overrightarrow$⊥($\overrightarrow{a}$-3$\overrightarrow$).
(Ⅰ)求k的值;
(Ⅱ)求向量$\overrightarrow{a}$與向量$\overrightarrow$夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案