分析 由f(x)-g(x)=0得f(x)=g(x),利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)f(x)和g(x)的交點(diǎn)個(gè)數(shù),利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:由f(x)-g(x)=0得f(x)=g(x),
作出函數(shù)f(x)和g(x)在[-$\frac{π}{2}$,3π]內(nèi)的圖象,
由圖象知兩個(gè)函數(shù)有4個(gè)交點(diǎn),
故函數(shù)f(x)-g(x)的零點(diǎn)個(gè)數(shù)是4,
故答案為:4.
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,根據(jù)函數(shù)與方程的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)是解決本題的關(guān)鍵.考查學(xué)生的作圖能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\frac{5}{4}$] | B. | (1,$\frac{5}{4}$) | C. | [1,$\frac{5}{4}$] | D. | [0,$\frac{5}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-$\sqrt{3}$ | B. | 2$\sqrt{3}$+3 | C. | 2+$\sqrt{3}$ | D. | 2$\sqrt{3}$-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,+∞) | B. | (-2,0) | C. | (-∞,0)∪(2,+∞) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (7,6) | B. | (8,7.5) | C. | (9,8.6) | D. | (10,9.2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com