分析 由正弦定理可得基本不等式可得sinC的范圍,再由sinC的值域可得sinC的值為1,在三角形中可得.
解答 解:∵在△ABC中,$\frac{a}{sinB}+\frac{sinA}$=2c,
∴由正弦定理和基本不等式可得:
2sinC=$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$≥2,
當(dāng)且僅當(dāng)$\frac{sinA}{sinB}$=$\frac{sinB}{sinA}$即sinA=sinB時(shí)取等號(hào),
∴sinC≥1,由又sinC≤1,故sinC=1,
∴在三角形中∠C=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.
點(diǎn)評(píng) 本題考查正弦定理解三角形,涉及基本不等式求最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4i | B. | -4i | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -5 | B. | $-\frac{3}{2}$ | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈Z | B. | (2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈Z | C. | (4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈Z | D. | (8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1 | C. | x2-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com