16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,拋物線y=$\frac{1}{4}$x2+$\frac{1}{4}$與雙曲線C的漸近線相切,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-y2=1

分析 由題意可得c=$\sqrt{5}$,即a2+b2=5,求出漸近線方程代入拋物線的方程,運(yùn)用判別式為0,解方程可得a=2,b=1,進(jìn)而得到雙曲線的方程.

解答 解:由題意可得c=$\sqrt{5}$,即a2+b2=5,
雙曲線的漸近線方程為y=±$\frac{a}$x,
將漸近線方程和拋物線y=$\frac{1}{4}$x2+$\frac{1}{4}$聯(lián)立,
可得$\frac{1}{4}$x2±$\frac{a}$x+$\frac{1}{4}$=0,
由直線和拋物線相切的條件,可得
△=$\frac{^{2}}{{a}^{2}}$-4×$\frac{1}{4}$×$\frac{1}{4}$=0,
即有a2=4b2,
解得a=2,b=1,
可得雙曲線的方程為$\frac{{x}^{2}}{4}$-y2=1.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用漸近線和拋物線相切的條件:判別式為0,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品.已知每生產(chǎn)1000千克甲產(chǎn)品需要原料3噸,勞動(dòng)力成本5000元;每生產(chǎn)1000千克乙產(chǎn)品需要原料2噸,勞動(dòng)力成本10000元.又知生產(chǎn)出甲產(chǎn)品1000千克可獲利6000元,生產(chǎn)出乙產(chǎn)品1000千克可獲利8000元.現(xiàn)在該企業(yè)由于受原料和資金條件限制,只能提供30噸原料和11萬(wàn)元資金,在這種條件下應(yīng)生產(chǎn)甲、乙產(chǎn)品各多少千克才能使總利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.某高級(jí)中學(xué)共有學(xué)生3200人,其中高二級(jí)與高三級(jí)各有學(xué)生1000人,現(xiàn)采用分層抽樣的方法,抽取容量為160的樣本,則應(yīng)抽取的高一級(jí)學(xué)生人數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x2-x-$\frac{4x}{x-1}$(x<0),g(x)=x2+bx-2(x>0),b∈R,若f(x)圖象上存在A,B兩個(gè)不同的點(diǎn)與g(x)圖象上A′,B′兩點(diǎn)關(guān)于y軸對(duì)稱,則b的取值范圍為( 。
A.(-4$\sqrt{2}$-5,+∞)B.(4$\sqrt{2}$-5,+∞)C.(-4$\sqrt{2}$-5,1)D.(4$\sqrt{2}$-5,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}$=2c,則∠C的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)數(shù)列{an}滿足a1=3,an+1-an=8×32n-1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知命題p:若方程x2+y2+2mx-2y+2m=0表示圓,則實(shí)數(shù)m≠1;
命題q:若以原點(diǎn)為對(duì)稱中心,坐標(biāo)軸為對(duì)稱軸的雙曲線的一條漸近線與直線2x-y+1=0平行,則雙曲線的離心率等于$\sqrt{5}$,下列命題真確的是(  )
A.p∧qB.¬p∨qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.過點(diǎn)P(2,-1)且與向量$\overrightarrow{a}$=(-2,3)平行的直線方程為2x+3y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.(1-$\frac{2}{{x}^{2}}$)(2+$\sqrt{x}$)6的展開式中,x項(xiàng)的系數(shù)是(  )
A.58B.62C.238D.242

查看答案和解析>>

同步練習(xí)冊(cè)答案