7.已知sinα-cosα=$\frac{1}{5}$,且0<α<π,則tanα=$\frac{4}{3}$.

分析 由條件利用同角三角函數(shù)的基本關系求得sinαcosα的值以及sinα+cosα的值,從而求得sinα和cosα的值,進而求得tanα的值.

解答 解:∵sinα-cosα=$\frac{1}{5}$,且0<α<π,平方可得 1-2sinαcosα=$\frac{1}{25}$,求得sinαcosα=$\frac{12}{25}$,
sinα+cosα=$\sqrt{{(sinα+cosα)}^{2}}$=$\sqrt{1+2sinαcosα}$=$\sqrt{1+\frac{24}{25}}$=$\frac{7}{5}$,
∴sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$,∴tanα=$\frac{4}{3}$,
故答案為:$\frac{4}{3}$.

點評 本題主要考查同角三角函數(shù)的基本關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.設數(shù)列{an}的前n項和Sn滿足Sn=2an-a1,且a1,a3+1,a4成等差數(shù)列,令bn=log2an
(1)求數(shù)列{an}的通項公式;
(2)令${c_n}=\frac{b_n}{a_n}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.河水自東向西的流速為3m/s,一輪船以4m/s的速度垂直水流方向向北橫渡,求輪船實際航行速度和方向.(參考數(shù)據:tan37°≈$\frac{3}{4}$,tan53°=$\frac{4}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)若函數(shù)f(x)=$\sqrt{({a}^{2}-1){x}^{2}+(a-1)x+\frac{2}{a+1}}$的定義域為R,求實數(shù)a的范圍;
(2)判斷k為何值時,函數(shù)f(x)=$\frac{2kx-8}{k{x}^{2}+2kx+1}$的定義域為R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,已知E、F、G分別是棱長為2的正方體ABCD-A1B1C1D1的棱AA1、CC1、DD1的中點.
(1)判斷多面體EGD1BCF是否是棱柱,并求它的體積;
(2)求證:平面EBFD1⊥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.F1,F(xiàn)2分別為二次曲線2x2+5y2=30的左,右焦點,動點P滿足|PF1|-|PF2|=4,則P點軌跡方程為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}(2-{x}^{2})}$的定義域是{x|1≤x<$\sqrt{2}$或-$\sqrt{2}$<x≤-1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩墻足夠長),用16m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB、BC兩邊),在P處有一棵樹與墻CD、AD的距離分別是a(0<a<12)m和4m,現(xiàn)需要將這棵樹圍在花園內(含邊界,不考慮樹的粗細).設矩形ABCD的面積是ym2,長DA為xm.
(1)設y=f(x),求y=f(x)的解析式并求出其定義域;
(2)試求y=f(x)的最大值與最小值之差g(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若f(x)=x${\;}^{\frac{1}{2}}$,則f($\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習冊答案