15.已知f(x)=$\left\{\begin{array}{l}{lnx,(0<x≤1)}\\{f(x-1)+1,(1<x≤3)}\end{array}\right.$,則f(2+$\frac{1}{e}$)=( 。
A.0B.1C.ln(1+$\frac{1}{e}$)+1D.ln(2+$\frac{1}{e}$)

分析 直接利用分段函數(shù),通過所求的表達式自變量的范圍,代入化簡求解即可.

解答 解:f(x)=$\left\{\begin{array}{l}{lnx,(0<x≤1)}\\{f(x-1)+1,(1<x≤3)}\end{array}\right.$,
則1<2+$\frac{1}{e}$<3,f(2+$\frac{1}{e}$)=f(1+$\frac{1}{e}$)+1=f($\frac{1}{e}$)+2=ln$\frac{1}{e}$+2=-1+2=1.
故選:B.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=loga(ax-$\sqrt{x}$)(a>0,a≠1為常數(shù)).
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)若a=3,x∈[1,9],求函數(shù)f(x)的值域;
(Ⅲ)若函數(shù)y=af(x)的圖象恒在直線y=-3x+1的上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{-{e^x},x≤1}\\{x+\frac{3}{x}-5,x>1}\end{array}}$,則f(x)的最小值為-e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=3ax2-2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b=$\frac{1}{2}$,f(x)=|x-$\frac{1}{2}$|在x∈[0,1]有兩個不同的解,求實數(shù)a的范圍.
(II)當|f(0)|≤2,|f(1)|≤2時,求|f(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某班要從A,B,C,D,E五人中選出三人擔任班委中三種不同的職務(wù),則上屆任職的A,B,C三人都不連任原職務(wù)的方法種數(shù)為( 。
A.30B.32C.36D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知向量$\overrightarrow a$=(3,1),$\overrightarrow b$=(1,3),$\overrightarrow c$=(k,-2),若(${\overrightarrow a$-$\overrightarrow c}$)∥$\overrightarrow b$,則向量$\overrightarrow a$與向量$\overrightarrow c$的夾角的余弦值是( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{1}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知3x2+5xy-2y2+x+9y-4=(3x+ay+b)(x+cy+d),求a,b,c,d的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知f(x)和g(x)分別為R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=lg(2x+1),則f(1)的值為( 。
A.lg2B.lg3C.$lg\sqrt{2}$D.$lg\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知兩個球的表面積之比為1:9,則這兩個球的體積之比為( 。
A.1:3B.1:$\sqrt{3}$C.1:9D.1:27

查看答案和解析>>

同步練習冊答案