A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
分析 利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得f(x)=2sin(ωx+φ-$\frac{π}{6}$),由f(-x)+f(x)=0,可得φ-$\frac{π}{6}$=kπ,k∈Z,結(jié)合范圍0<φ<π,可求φ,由f(0)+f($\frac{π}{2}$)=0,解得:ω=2k,k∈Z,又ω>0,不妨取k=1,可得ω=2,可得解析式f(x)=2sin2x,即可計(jì)算求得f($\frac{π}{4}$)的值.
解答 解:∵f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{6}$),f(-x)+f(x)=0,
∴函數(shù)y=f(x)為奇函數(shù),φ-$\frac{π}{6}$=kπ,k∈Z,解得:φ=$\frac{π}{6}$+kπ,k∈Z,
∵0<φ<π,
∴φ=$\frac{π}{6}$,可得f(x)=2sinωx,
∵對任意x∈R,f(x)+f(x+$\frac{π}{2}$)=0,可得:f(0)+f($\frac{π}{2}$)=0,
∴2sin0+2sin$\frac{π}{2}$ω=0,解得:$\frac{π}{2}$ω=kπ,k∈Z,解得:ω=2k,k∈Z,
∵ω>0,不妨取k=1,可得ω=2,
∴f(x)=2sin2x,可得:f($\frac{π}{4}$)=2sin(2×$\frac{π}{4}$)=2.
故選:D.
點(diǎn)評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì),考查了特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {2,3,4} | C. | {0,3,4} | D. | {0,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -3 | D. | -4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com