4.若函數(shù)f(x)=2sin2x的圖象向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后得到函數(shù)g(x)的圖象,若對滿足|f(x1)-g(x2)|=4的x1、x2,有|x1-x2|的最小值為$\frac{π}{6}$,則φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 由題意可得|x1-x2|的最小值為$\frac{T}{2}$-φ=$\frac{π}{2}$,由此求得φ的值.

解答 解:函數(shù)f(x)=2sin2x的圖象向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后得到函數(shù)g(x)=2sin2(x-φ)的圖象,
若對滿足|f(x1)-g(x2)|=4的x1、x2,有|x1-x2|的最小值為$\frac{T}{2}$-φ=$\frac{π}{ω}$-φ=$\frac{π}{2}$-φ=$\frac{π}{6}$,∴φ=$\frac{π}{3}$,
故選:C.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,判斷|x1-x2|的最小值為$\frac{T}{2}$-φ,是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且F1是線段QF2的中點(diǎn),若過A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線l:x-$\sqrt{3}$y-3=0相切.
(1)求橢圓C的方程;
(2)過定點(diǎn)M(0,2)的直線l1與橢圓C交于G,H兩點(diǎn),且|MG|>|MH|.若實(shí)數(shù)λ滿足$\overrightarrow{MG}=λ\overrightarrow{MH}$,求λ+$\frac{1}{λ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線C1:$\frac{|x|}{a}$+$\frac{|y|}$=1(a>b>0)所圍成的封閉圖形的面積為4$\sqrt{5}$,曲線C1的內(nèi)切圓半徑為$\frac{2\sqrt{5}}{3}$,記C2為以曲線C1與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過橢圓C2中心O的任意弦,M是橢圓上一點(diǎn),且滿足($\overrightarrow{MA}$+$\overrightarrow{MB}$)•$\overrightarrow{AB}$=0,求△AMB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC 中,點(diǎn)D在邊 AB上,且$\frac{AD}{DB}$=$\frac{1}{3}$.記∠ACD=α,
∠BCD=β.
(Ⅰ)求證:$\frac{AC}{BC}$=$\frac{sinβ}{3sinα}$
(Ⅱ)若α=$\frac{π}{6}$,β=$\frac{π}{2}$,AB=$\sqrt{19}$,求BC 的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(1)把函數(shù)y=sin2x的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)后得到函數(shù)y=f(x)圖象,對于函數(shù)y=f(x)有以下四個(gè)判斷:
①該函數(shù)的解析式為y=2sin(2x+$\frac{π}{6}$);②該函數(shù)圖象關(guān)于點(diǎn)($\frac{π}{3}$,0)對稱;
③該函數(shù)在[0,$\frac{π}{6}$]上是增函數(shù);④函數(shù)y=f(x)+a在[0,$\frac{π}{2}$]上的最小值為$\sqrt{3}$,則a=2$\sqrt{3}$.
(2)以下命題:⑤若|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|,則$\overrightarrow{a}$∥$\overrightarrow$;⑥$\overrightarrow{a}$=(-1,1)在$\overrightarrow$=(3,4)方向上的投影為$\frac{1}{5}$;⑦若非零向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow$|,則|2$\overrightarrow$|>|$\overrightarrow{a}$+2$\overrightarrow$|.
在(1)和(2)中,正確判斷的序號是②④⑤⑥⑦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.方程log2(9x+7)=2+log2(3x+1)的解為x=0和x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系中,定義$\left\{\begin{array}{l}{{x}_{n+1}={x}_{n}-{y}_{n}}\\{{y}_{n+1}={x}_{n}+{y}_{n}}\end{array}\right.$,(n∈N*) 為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換,我們把它稱為點(diǎn)變換,已知P1(1,0),P2(x2,y2),P3(x3,y3),…是經(jīng)過點(diǎn)變換得到的一無窮點(diǎn)列,則P3的坐標(biāo)為(0,2);設(shè)an=$\overrightarrow{{P}_{n}{P}_{n+1}•}$$\overrightarrow{{P}_{n+1}{P}_{n+2}}$,則滿足a1+a2+…+an>1000的最小正整數(shù)n=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=(m-\frac{n}{3})•{3^x}+{x^2}+2nx$,記函數(shù)y=f(x)的零點(diǎn)構(gòu)成的集合為A,函數(shù)y=f[f(x)]的零點(diǎn)構(gòu)成的集合為B,若A=B,則m+n的取值范圍為[0,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}<$φ<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{3}$)=(  )
A.$\sqrt{3}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案