12.已知兩直線l1:x+(m+1)y+m-2=0,l2:mx+2y+8=0.
(1)當(dāng)m為何值時(shí),直線l1與l2垂直;
(2)當(dāng)m為何值時(shí),直線l1與l2平行.

分析 (1)利用兩直線垂直的充要條是 A1A2+B1B2=0,可得 1×m+(1+m)•2=0,由此求得解得m的值.
(2)由兩直線平行的充要條件是$\frac{{A}_{1}}{{A}_{2}}$=$\frac{{B}_{1}}{{B}_{2}}$≠$\frac{{C}_{1}}{{C}_{2}}$,由此求得解得m的值.

解答 解:(1)∵兩條直線l1:x+(1+m)y+m-2=0,l2:mx+2y+8=0,由兩直線垂直的充要條件可得 A1A2+B1B2=0,
即 1×m+(1+m)•2=0,解得m=-$\frac{2}{3}$.
(2)由兩直線平行的充要條件可得$\frac{{A}_{1}}{{A}_{2}}$=$\frac{{B}_{1}}{{B}_{2}}$≠$\frac{{C}_{1}}{{C}_{2}}$,
即$\frac{1}{m}$=$\frac{1+m}{2}$≠$\frac{m-2}{8}$,
解得:m=1.

點(diǎn)評(píng) 本題主要考查兩直線平行的性質(zhì),兩直線垂直的性質(zhì),利用了兩直線垂直的充要條是 A1A2+B1B2=0,兩直線平行的充要條件是件是$\frac{{A}_{1}}{{A}_{2}}$=$\frac{{B}_{1}}{{B}_{2}}$≠$\frac{{C}_{1}}{{C}_{2}}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題p:?x∈[l,2],m≤x2,命題q:?x∈R,x2+mx+l>0
(Ⅰ)寫出“¬p命題;
(Ⅱ)若命題p∧q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(sinα+cosα)=$\frac{1}{2}$sin2α(α∈R),則f(sin$\frac{π}{3}$)的值是( 。
A.$\frac{\sqrt{3}}{8}$B.$\frac{1}{8}$C.-$\frac{1}{8}$D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a=(2,m),\overrightarrow b=(-1,m)$,若$(2\overrightarrow a+\overrightarrow b)∥\overrightarrow b$,則$|{\overrightarrow a}|$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)對(duì)實(shí)數(shù)x∈R滿足f(x)+f(-x)=0,f(x-1)=f(x+1),若當(dāng)x∈[0,1)時(shí),f(x)=ax+b(a>0,a≠1),f($\frac{3}{2}$)=1-$\sqrt{2}$.
(1)求x∈[-1,1]時(shí),f(x)的解析式;
(2)求方程f(x)-|log4x|=0的實(shí)數(shù)解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,$\frac{1}{3}$),則f(x)=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知角α的終邊上一點(diǎn)P落在直線y=2x上,則sin2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)a為實(shí)數(shù).函數(shù)f(x)=x3-ax2+(a2-1)x在(-∞,0)上是增函數(shù).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(-1,2),終點(diǎn)坐標(biāo)是(2,1),則起點(diǎn)坐標(biāo)是(3,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案